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Preface

J.M. AARTS, E. COPLAKOVA, F. VAN ENGELEN, K.P. HART, M.A. MAURICE,
J. VAN MILL, AND M. TITAWANO

Department of Pure Mathematics
TU Delft
2628 CD Delft, the Netherlands

The Tenth Summer Conference on General Topology and Applications was
held August 15-18, 1994 at Vrije Universiteit, Amsterdam. There were four spe-
cial sessions at the conference: Continuum Theory and Dynamics, organized by
Jan Aarts; Topology and Descriptive Set Theory, organized by Fons van Engelen;
Set-Theoretic Topology, organized by Klaas Pieter Hart; and Infinite-dimension-
al and Geometric Topology, organized by Jan van Mill.

In addition there were two minicourses: Topological Methods in Surface Dy-
namics by Ph.L. Boyland and Topology and Descriptive Set Theory by A.
Kechris.

The conference had over 180 participants with more than 100 contributed talks
at the general and special sessions. There were, in addition, 20 invited talks. Ple-
nary lectures were given by:

» J. W. Milnor on “Local Connectivity in Holomorphic Dynamics,”

» M. E. Rudin on “A Few Old Problems, Solved and Unsolved,” and

« 1. Moerdijk on “Groupoids, Local Equivalence Relations, and Monodromy.”
The principal speakers and the topics at the special sessions were:

« F. Takens on “Topological Conjugacies, Moduli and Time Series,”

* A. W. Miller on “Descriptive Set Theory and Forcing,”

« B. Balcar on “Topologies on Complete Boolean Algebras,” and

« R. Pol on “On Some Problems Concerning Weakly Infinite-dimensional

spaces.

The organizers are grateful to Vrije Universiteit for hosting the conference and
to the New York Academy of Sciences for publishing the proceedings. We also
acknowledge and are grateful for the support (financial and otherwise) we re-
ceived from: Technische Universiteit Delft, Vrije Universiteit Amsterdam, Eras-
mus Universiteit Rotterdam, Universiteit van Amsterdam, Thomas Stieltjes
Instituut, Stichting Mathematisch Centrum, Koninklijke Nederlandse Akademie
van Wetenschappen, Nederlandse Organisatie voor Wetenschappelijk Onder-
zoek, European Research Office of the U.S. Army, Office of Naval Research Eu-
ropean Office, Vereniging Trustfonds Erasmus Universiteit Rotterdam, Elsevier
Science, Kluwer Academic Publishers, AKZO nv, IBM Nederland N.V., and Ra-
bobank Nederland.

Finally, our sincere thanks to the referees, without whose diligence and time-
liness it would not have been possible to publish this volume.
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Maarten Maurice died. We dedicate these proceedings
to his memory.
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Eva Coplakova
Fons van Engelen
Klaas Pieter Hart
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Marijke Titawano
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Electronic Access for Topology Resources

B. BRECHNER,® M. MISLOVE,? D. SHAKHMATOV, AND S. WATSON?

2Department of Mathematics
University of Florida
Gainesville, Florida 32611-8105

bDepartment of Mathematics
Tulane University
New Orleans, Louisiana 70118

“Department of Mathematics
Ehime University
Matsuyama, Japan
and
4Department of Mathematics
York University
North York, Ontario M3J 1P3 Canada

INTRODUCTION

Electronic communication is no longer the wave of the future, but a fact of to-
day’s life. E-mail now is almost universal for universities and colleges, and for
businesses as well. For example, at many institutions — the University of Florida
among them — almost all departmental business is conducted by e-mail. E-mail has
the advantage of allowing us to communicate with our colleagues all over the world
virtually instantaneously. Several electronic journals — journals that “publish”
their issues electronically on the World Wide Web (WWW) — now are in opera-
tion. There has been a proliferation of anonymous ftp sites, including sites for
mathematical papers, some of which (sites) focus on topology. A number of soci-
eties, including the American Mathematical Society, have web sites, and it now is
possible to access the Mathematical Reviews on-line. The four of us strongly be-
lieve that it is important for the mathematical community to take advantage of, and
participate in, the opportunities that the World Wide Web offers. At a personal lev-
el, these opportunities can make life easier by providing quick access to increasing
amounts of information of all kinds, and by allowing instantaneous communication
with colleagues. At the professional level, advances in information technology pro-
vide opportunities never before possible for increasing our research productivity
and our awareness of new results, new ideas, conferences, and other events of in-
terest to the mathematical community. The authors believe it is absolutely essential
that we develop ways to take advantage of the internet so that the mathematical
community is able to move into the twenty-first century as a full partner in the In-
formation Age. The Information Age can be characterized as providing the possi-
bility for people all over the world to know what is happening and to be able to
communicate with one another in a timely fashion. We believe we must find effec-
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tive uses for the tools this places at our disposal, as well as those which shortly will
appear.

In that spirit, each of us is now involved in some kind of electronic project re-
lated to topology, and we wish to describe these projects below, because we feel
they will be of interest to the entire topological community. The first author has
started an electronic project called “Topology Eprints” at the University of Florida.
This is basically an anonymous ftp/web site which is a repository for papers and
abstracts in all areas of topology. There also is a newsletter associated with Topol-
ogy Eprints. The second author has founded the electronic series, “Electronic Notes
in Theoretical Computer Science” whose goal is the rapid electronic publication of
conference proceedings, lecture notes and topical monographs using the World
Wide Web. Finally, the last two authors are jointly developing a web site called
“Topology Atlas.” This web site is attempting to be all-inclusive. It includes ab-
stracts and preprints of papers submitted to the site, as well as abstracts of papers
on the Topology Eprints ftp site, a list of topology conferences all over the world,
a list of “topology centers,” open questions, publisher informatjon, and much,
much more. In the paragraphs below, we describe the purpose and vision we have
for these activities.

TOPOLOGY EPRINTS

Beverly L. Brechner: brechner@math.ufl.edu

The Department of Mathematics at the University of Florida has made a com-
mitment to provide disk storage space for maintaining the archive of Topology
Eprints. The archive is accessible through anonymous ftp:

ftp.math.ufl.edu/publtopology

and is also accessible through a world wide web page:

http://www.math.ufl.edu/~teprints

E-mail to be read and answered manually, may be sent to:
teprints@math.ufl.edu

The Topology Eprints site is basically an ftp and web site, which is a repository
for papers and abstracts in all areas of topology. Anyone can access and download
papers by anonymous ftp on the Internet. If you have access to 2 web browser
such as Netscape or Mosaic, you can access the web site, as well.

There is also an electronic newsletter associated with Topology Eprints. The
newsletters contain information about conferences, open questions, and other items
of interest. Melvin Henriksen is our Newsletter Editor.

Subscribers to our mailing list automatically receive both the newsletters and
also the abstracts and announcements of new papers as they arrive. Thus, users can
decide which papers will be of interest.

To add your name to our mailing list, write to: teprints@math.ufl.edu with the
word subscribe on the subject line. Upon doing this, you will receive an e-mail
message describing how to receive the Frequently Asked Questions (FAQ) docu-
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ment. The document will describe how to use the system via ftp; that is, how to
download and upload papers and abstracts by ftp.

The Topology Eprints world wide web site is linked to its ftp site and to many
other sites of interest to the topological community. In particular, there are links to
the other two web sites discussed in this article. Anything from our web site may
be printed directly on your own system if you are using a Unix system, and possibly
also using other operating systems. If you cannot print directly from the web site,
or cannot download from the web site, you will need to retrieve the information
by ftp.

The first author wishes to express her appreciation to the many people who
helped her get this project off the ground. These include Bob Flagg, Ralph Kopper-
man, and William Mitchell. And special thanks to University of Florida graduate
student Scott Chastain, who has been acting as moderator/web developer of the sys-
tem from the start, and who actually made it work! Without Scott’s help, it
wouldn’t exist. And last, but not least, many thanks to the Department of Mathe-
matics of the University of Florida for its support of this project.

ELECTRONIC NOTES IN THEORETICAL COMPUTER SCIENCE

Michael W. Mislove: mwm@math.tulane.edu

Electronic Notes in Theoretical Computer Science (ENTCS) is meant to provide
rapid, electronic publication of conference proceedings, lecture notes, and topical
monographs. ENTCS is published electronically through the facilities of Elsevier
Science B.V., and is affiliated with the journal Theoretical Computer Science. EN-
TCS is available at the URL

htip:[/www.elsevier.nlflocate/entcs

All web users are allowed access to the Table of Contents and Abstracts of each
volume of ENTCS, which also are published in TCS. Access to complete papers
in the volumes is available on the web to those whose home institution maintains
a subscription to TCS. It is anticipated that this arrangement will continue until
at least the end of 1996. The Managing Editors of ENTCS are Michael Mislove
(Tulane), Maurice Nivat (University of Paris), and Christos Papadimitriou (UC
San Diego).

Topologists should find ENTCS an important resource, since it has a great deal
of topology and related material in it. For example, Volume 1

http://www.elsevier.nlflocate/entcs/volumel.html

which is the Proceedings of the Eleventh MFPS meeting held last spring includes
a number of papers on topology. These papers focus on the non-Hausdorff topol-
ogies and their use in programming semantics. Four of the thirty-one papers in
Volume 1 are devoted to topology, and this area has had consistently high repre-
sentation on the MFPS programs. Likewise, other theoretical computer science
meetings often have topology papers in their programs; theoretical computer sci-
ence has grown to be one of the most active areas of application for topology, us-
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ing topology to solve the problems that arise there, and often providing the
impetus for new research in topology.

The need for more rapid publication and dissemination of conference proceed-
ings is due to the nature of most conferences in theoretical computer science. Such
conferences usually involve a Call for Papers in response to which researchers sub-
mit papers for presentation at the meeting. The Program Committee then selects
some of the submissions for presentation at the meeting, and the conference pro-
gram is comprised of these papers perhaps along with some invited addresses. The
process of requesting papers and then selecting them precedes the meeting by six
months or more, so the papers already are somewhat dated when they are presented.
Moreover, it is a common practice of conferences to distribute hard copy of their
proceedings to the participants at the meeting. ENTCS is trying to eliminate further
delays in the publication of this material by publishing the proceedings concurrent-
ly with the meeting itself. In addition, by utilizing the World Wide Web the mate-
rial is disseminated much more broadly than can be achieved with the print media.
We also allow conferences to distribute hard copy versions of their proceedings at
their meeting if they wish, although we require that they have the same content and
format as the electronic version.

Since conference proceedings of the type just described often consist largely of
«extended abstracts” rather than complete journal papers, the editors expect and en-
courage conferences that publish their proceedings as volumes in ENTCS also to
seek publication of journal versions of some of the papers in their proceedings with
a major journal. For example, Volume 1 of ENTCS consists of the Proceedings of
the Eleventh Conference on the Mathematical Foundations of Programming Se-
mantics, held at Tulane University in March, 1995. A journal proceedings of this
conference currently is in preparation. It will consist of expansions of some of the
papers from the meeting, which have been written to journal standards. These sub-
missions will be subject to the usual refereeing process, and when this process is
complete, the journal version of the proceedings will appear as a special issue of
Theoretical Computer Science.

While the primary motivation for founding ENTCS was to provide more rapid
publication of conference proceedings as just described, there are other materials
that would benefit from such publication. Among these are lecture notes and ac-
companying material for courses, as well as topical monographs of a timely nature.
The series is published in volumes, each of which comprises a conference proceed-
ings, a set of lecture notes, or a topical monograph. Publication of the material con-
sists of placing the material in the ENTCS archive, where it is accessible from the
web. This is accompanied by publication of the Table of Contents and the Abstracts
of the papers in the volume in Theoretical Computer Science.

Because the editors want ENTCS to have the same appearance as high-quality
print media, we have adopted some LaTeX macros that are used to prepare papers
for publication in volumes in the series. The files for full papers are in PostScript,
which has emerged as a universally accepted format for viewing and printing tech-
nical papers. The Table of Contents and Abstracts for each volume are prepared in
HTML so that they can be viewed by any of the standard Web browsers.

One of the motivations for seeking an established publisher to help publish EN-
TCS was the editors’ desire for a reliable archiving arrangement for ENTCS.
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Elsevier will maintain the archive, and also will provide CD-ROM disks with ac-
cumulated volumes as appropriate. These CD-ROM disks will be distributed as part
of subscriptions to TCS. The materials in ENTCS volumes are copyrighted by
Elsevier. ENTCS volumes also will be reviewed by the usual review journals, such
as Mathematical Reviews and Zentralblatt.

Conference organizers who are interested in publishing the proceedings of their
meeting in ENTCS should contact one of the editors concerning their submission,
or should send e-mail to me at mwm@math.tulane.edu. The list of editors is avail-
able at the ENTCS WWW site, as are details of what is required for a submission
to ENTCS. Likewise, anyone having lecture notes or a topical monograph that he
or she wishes to publish in ENTCS should contact one of the editors.

TOPOLOGY ATLAS

Dmitri Shakhmatov: dmitri@ehimegw.dpc.ehime-u.ac jp
Stephen Watson: stephen.watson@mathstat.yorku.ca

Topology Atlas is a multi-purpose center for electronic distribution of informa-
tion related to topology, a comprehensive attempt to create a “global village” in to-
pology by taking advantage of recent advances in computer and Internet
technology. Topology Atlas is designed to be a kind of “one-stop information shop-
ping center” for those mathematicians and those members of the general public
with some interest in topology. The publishers will try to accommodate and include
any topic or any type of information related to topology which seems to be of some
interest. Topology Atlas intends to be a complete historical and living portrait of
the entire topological community, its endeavors (past and present), and its accom-
plishments — basically a living encyclopedia! Its purposes are two-fold. The first
is to make the mathematical and scientific community aware of what topologists
are doing. The second is to bring together topologists in the world community, es-
tablish communication, and promote joint work in a “living,” interactive environ-
ment. We hope that this site will be a model for other areas of mathematics to
emulate.

Topology Atlas is devoted to topology in the broadest sense possible. This in-
cludes (but is not limited to) low-dimensional topology, the topology of manifolds,
knot theory, algebraic topology, differential topology, piecewise-linear topology,
general topology, set-theoretic topology, geometric topology, continuum theory,
plane topology, topological graph theory, topological algebra (groups, rings, fields
and modules), topological vector spaces, topological aspects of functional analysis
and C*-algebras, topological questions of convex analysis and optimization, topo-
logical fixed point theory, descriptive set theory, topological problems in real and
complex analysis, potential theory and partial differential equations, topological
measure theory, convergence of measures and capacities, topology in computer sci-
ence, digital topology and pattern recognition, topology in game theory, mathemat-
ical programming and mathematical economics. This list could be easily extended,
but this gives a general direction.
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As we are writing this (January 30, 1996), Topology Atlas is less than 2 months
old, and the baby is growing very fast, so by the time this article appears in print
in the “traditional” hard copy media, our current description will be hopelessly ob-
solete. Therefore, we decided to describe both current features of Topology Atlas,
as well as planned future additions to them.

First we mention current section headings of Topology Atlas.

SECTION: Who’s Who in Worldwide Topology collects lists of topologists
who are currently “on-line.” To be “on-line” means to have your home page
stored in some computer in the world which can be accessed via one of the pop-
ular Internet protocols (hypertext transmission protocol [http], file transmission
protocol [ftp], or gopher protocol). Your home page itself is nothing but a text
file in the so-called HTML (hyper text markup language) format which contains
some useful information about you, such as your mailing address, e-mail address,
complete list of publications or just the most recent ones, perhaps a list of your
graduate students, a list of your scientific interests, and any other information
which you want to be widely known and available (all items mentioned above are
optional). Once created and stored on some computer, your home page becomes
a powerful vehicle for establishing new scientific contacts, because people who
read Topology Atlas will be able to find information which you have placed in
your home page within seconds. If you already have a homepage, please send its
URL to Topology Atlas and it will be listed there. If you don’t have a homepage
but would like to have one, the publishers will be pleased to create a homepage
for you and store it in our computer — all you need is just to send us the text you
would like to have on your homepage, with or without links. We can also create
and store homepages of “topological societies,” i.e., research groups in topology
united either by common research interests or geographical location, and home-
pages of topology “research centers” which usually contain lists of people in the
same regional topology group.

SECTION: Topology Happenings Around the World lists conferences which
are related to topology in our broad definition, topological seminars, and visiting
topologists in various regions, as well as miscellaneous topological news and an-
nouncements.

SECTION: Research in Topology is one of the biggest in Topology Atlas.
First, it has a comprehensive list of research topics in topology. Each contribution
to this subsection is a short description of a particular topic written by a leading
expert in the area so that browsers from the topological, mathematical, or scien-
tific communities who are not specialists in that particular topic can become just
a little bit familiar with the kinds of things that topologists work on. Following
it is a collection of preprints, abstracts, research announcements, survey articles,
and book descriptions, classified according to the special Topology Atlas Subject
Classification of Topology. An important feature of this section is the collection
of open problems in topology, which are subsequently discussed in the discussion

forum.

SECTION: A recent addition to Topology Atlas, Topological Commentary, ed-
ited by Melvin Henriksen, is a newsletter devoted to publicizing items of a more
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personal nature to readers of Topology Atlas. TopCom is concerned with an-
nouncements about individuals or groups, and expressions of opinions on contro-
versial matters. Bxactly what will appear will depend on contributors and the
interests of readers, but it will include: (1) Topological People — obituaries, in-
terviews with major figures, and longer articles about topologists; (2) Editors and
Topology — experiences involving attempts to publish papers in “general” jour-
nals where editors refuse to send them to a referee; (3) Personal Opinion — which
may take the form of a letter to the editor or a column on some topic e.g., “Where
is (some part of) topology going” or “What every young topologist should know”
or “The effect of the current job market on topology;” (4) Historical reminiscenc-
es.

SECTION: Publishing Topology lists major publishers of topology, as well as
journals which are known to publish topology at a reasonable scale.

SECTION: Employment Opportunities lists hirings in topology and publishes
CV’s of topologists looking for a job. Many more section headings are in the
pipeline, so please stay tuned. Among planned future additions are a database of
counterexamples in topology and a database of journals publishing topology, au-
thor’s profiles, history of topology (with a collection of binary picture files re-
producing rare and historic documents related to topology), collections of
abstracts of talks presented at topological conferences, and many, many more,

The best way to read Topology Atlas is to use its interactive WWW (world wide
web) site with URL (universal resource locator) address

http://www.unipissing.ca/topology/

The Web site is complemented by a variety of specialized mailing lists available
through Topology Atlas Listserver. In the near future it is planned to have full
ftp, telnet, and e-mail access to Topology Atlas, as well,

Topology Atlas welcomes and encourages submission of new information relat-
ed to topology. The rules are simple: it suffices to send your information as an e-
mail message to one of the publishers. We prefer ordinary (ASCII) text and are
equally happy with LaTeX, AMS-TeX, plain TeX, and HTML but *any* format of
electronic information is fine. Just send us your information as a regular e-mail
message or, if you prefer, we are equally happy with attachments, floppy disks,
anonymous ftp addresses, or URL links.

The publishers are proud to have the brilliant Topology Atlas team which makes
Topology Atlas what it is. By the end of January 1996 this team has undergone ex-
tensive formation and development, but already includes many people whose ex-
pertise is a tremendous asset for Topology Atlas. As was already mentioned before,
Melvin Henriksen is the Editor of TopCom. Klaas Pieter Hart is the Preprint Editor
and John Schommer is the Editor for Conference Abstracts. Beverly Brechner is the
Editor of the Continuum Theory section and Murat Tuncali is the Local Editor at
Nipissing University. Kim Price is the Art Director. Additional appointments are
forthcoming. The publishers are especially pleased to acknowledge World Wide
Web cooperation and assistance of Nipissing University (North Bay, Ontario, Can-
ada), the host of the 12th Summer Conference on Topology and its Applications




8 ANNALS NEW YORK ACADEMY OF SCIENCES

and Workshop on Continuum Theory, Set-Theoretic Topology, and Applied Topol-
ogy (August 12-16, 1997). We are grateful for the support of Murray Green (Vice-
President, Administration and Finance), Ted Chase (Dean of Arts and Science), and
Robert Bergquist (Associate Dean of Arts and Science). Our special thanks go to
the Technical Support Team from the Department of Computing and Communica-
tion Services: Frank Ciancio (Internet Specialist), Andre Roy (Programmer/Ana-
lyst), and Greg Seamen (Technical Support Technologist).

CONCLUSION

And so, dear colleagues, we hope we have given you enough of a portrait of our
electronic endeavors to whet your appetite. In particular, we hope you take advan-
tage of these and all the other electronic opportunities that are now available to you.
But we note that, in order for these electronic ventures to be successful, it is nec-
essary that you actively participate by contributing to these endeavors yourselves.
One must “give” in order to “receive.”

Let us look to the future! For the future is NOW!

NOTE ADDED IN PROOF: Topology Eprints has now merged with Topology
Atlas. The University of Florida ftp site has become a mirror for the new Topol-
ogy Atlas ftp site. To submit information to Topology Atlas, or ask questions,
send e-mail to:

atlas@yorku.ca
To retrieve articles by ftp from the University of Florida, use the eddress:

topology-atlas-eprints@math.ufl.edu
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ABSTRACT: In this note we provide an elementary proof of the following generalization of
Holsztynski’s theorem [2]: If there exists a linear isometry T of a completely regular subspace
A of Cy (X) into Cq (Y), then there is a subset Yy of Y and a continuous map # of ¥, onto X and
a continuous map a: Yo — K, |a] =1, such that (Tf }(y) = a(y) f(h(y)) forally EY and all fEA.

As a consequence, we extend to Co(X )-spaces an old result by Myers [3].

INTRODUCTION

Let K denote the field of real or compltex numbers. For a Jocally compact Haus-
dorff space X, we denote by Cg(X) the Banach space of all continuous K-valued
functions defined on X which vanish at infinity, equipped with its usual supre-
mum norm. If X is compact, we write C(X) instead of Cy(X). X U {0} denotes the
Alexandroff compactification of X.

The well-known Banach-Stone theorem states that if there exists a linear
isometry T of Cy(X) onto C(Y), then there is a homeomorphism & of Y onto X
and a continuous map a: Y = K, |a| = 1, such that

(TF)(y) = a(y)f(h(y)) forally € Yandall f€ Co(X).

A generalization of the above theorem was given by Holsztynski [2]. He
proved that if there exists a linear isometry T of C(X} into C(Y), then there is a
closed subset Y of Y and a continuous map h of Yy onto X and a continuous map
a:Yy— K, |a| =1, such that

Mathematics Subject Classification: Primary 46E15; Secondary 46E25.

Key words and phrases: Holszty nski’s theorem, linear isometry, completely regular
subspace.
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(TF)) = a(y) f(h(y)) for all y € Yy and all f € C(X).

Let us recall that a linear subspace A of Cy(X) is said to be completely regular
if for every x € X and every open neighborhood U of x, there exists f&€ A with
ILfIl =|f(x)| =1 and |f] <1 outside U.

In this note we provide a proof of an extension of Holsztynski’s theorem for
Co(X)-spaces; namely, completely regular subspaces. Our proof does not depend
on extreme points , T-sets, M ideals, ... (see [1]), but on elementary concepts in-
stead. Furthermore, despite the lack of constant functions, the isometry can be
written as a weighted composition map.

As corollary we extend to Cy(X)-spaces the following result due to Myers [3]:
Let K be the real numbers. Then a sufficient condition for the compact spaces X
and Y to be homeomorphic is that a completely regular linear subspace of C(X)
and such a subspace of C(Y) be isometrically isomorphic.

THEOREM: If there exists a linear isometry T of a completely regular sub-
space A of Co(X) into C((Y), then there is a subset Yq of Y and a continuous map
h of Y, onto X and a continuous map a: Yy — K, |a| = 1, such that

(TFXy) = a(y) f(h(y)) forally € Y and all fEA.

Proof: Forall xE€X,let C, = {fEA: 1=IIfIl =|f(x)|}. For any f €A, let
L(f) ={y €Y: ITfIl = [(TA)y)|} and let I, =[Vsec L(f). To prove that I is
nonempty for all x €X and, since I, is a closed subset of My = {y €Y: [(Tf)(»)| =
Tl /2}, which is compact for any f€ C, C Co(X), it suffices to prove that if f,
..., f, belong to C,, then ﬂf;l L(f) = @. We have that 1 = Il f; 1| = |f;(x)| for all
21 n. Let fEA defined as h-1 (| i)/ fi()fi- Clearly | ()] =n = Il fI.
Since T is an isometry, || TfIl = n and there is y € Y such that n = | (Tf)(y)| =
S0 £ OV F (0) (TG As I TH1I s1foralli=1, ..., n, we deduce that
(TF))| =1foralli=1, ..., n, thatis, y € (V[_1 L(f;).

We next show that, given xy €X, if fEA and f(xg) = 0, then Tf(y) =0 for all
y€EI, . If there exists yg €I, such that Tf(yg) = 0 for some f €A, we can assume
that 11l =1 and Tf(yg) =@ with 0 < = 1. Let U = {x €X: |f(x)| = a/2}. Since A
is completely regular, there is g €A such that 1= llgil = |g(xg)|, |g(x)| <1 for all
x €U and, multiplying by a constant if necessary, Tg(yg) =1. Since U is compact,
we can consider s = sup, e y{|g(x) [} < 1. Then there exists M >0 such that 1 + Ms
< o + M. Take x € U. Then |(f + Mg )(x)| s 1 + Ms. If x €U, then |(f + Mg)(x)| =
«/2 + M. Hence lIf + Mgll <a+M,buta+ M = (Tf)(yg) + (M Tg) (yp) = NT(f+
Mg)Il, which is a contradiction.

Let us now show that | f(xg) | =|Tf(y)| for all y €I, and all fEA. It is enough
to check that if |f(xg) | =1 for some fE A, then |Tf(y)ﬁ =1 for all y €1, . Indeed
there exists g €A such that 1 = lig |l = |g(xo)|. From the definition of /,, we know
that |Tg(y)|=1 for all y €1, . Multiplying by a constant if necessary, we will as-
sume that f(xg) = g(xg). Hence, (f - g)(xg) = 0 and, by the preceding paragraph,
IT£(5)| = Tg(y)| = 1 for all y 1,

To prove that [, N I,= & whenever x, x’ are distinct elements of X, take f €4
such that | f(x)| = | f(x)| . By applying the above arguments, it is easy to verify
thatif y €l and y’ €1, then [(TH()] =) = |f()] = (THGN]- So LN 1y =,
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Let Y be the set UxEX I, and let h be a map defined of Y onto X by the re-
quirement that h(y) = x if y €I,. This map is well-defined since the elements of
the family {I,: x €X} are pairwise disjoint and it is onto from the fact that I, =&
for every x €X.

To prove the continuity of &, suppose that k(yg) = xq for some yg €Yy. Let U be
an open neighborhood of xy €X and , since A is completely regular, let f €A such
that f(xg) = I fIl =1 and |f(x)| <1 for all x outside U. Let s =sup,ex-y| f(¥)| =
SUP,e(xU (o)) -ul f(X)| It is easy to see that s <1. Since yg €1y, [(TFyo)| = 1 TF I
=1.Let V ={y €Yy : [(TF))| > s}. Clearly V is an open neighborhood of y,. Let
y €V. Hence, | f(h(»))| = KTF)(»)| > s; that is, h(y) EU.

Finally, let us define a map a of Y into K as follows: given y €Yy, let f any
function in A such that f(h(y)) = 1. Hence, we define a(y) = (Tf)(y) for all y €Y,.
This is a well-defined map because if we take another function g in A such that
g(h(y)) = 1, then (f - g)(h(»)) =0 and, as we have seen above, (Tf)(y) = (T8)(»)
Moreover, |a(y)| =1 for all y €Y,

Next we obtain the multiplicative representation of T. We have already proved
that if f(h(y)) =0, then (Tf)(y) =0 for all y €Y, and all f EA. If f(h(y)) = 0 for
some f €A and some y €Yy, then let g = f—f(h(y))k, k being any function in A
such that k(h(y)) = 1. Clearly g(h(y)) = 0. Thus, (Tg)(y) = 0; that is, (Tf}y) =a(y)
FCR())-

In order to prove the continuity of a, fix y € Y and consider any f & A such
that f(h(y)) = 0 and let W = {x €X: f(x) = 0}. It is clear that B~1(W) is an open
neighborhood of y. Moreover, the map Tf/(f o k) is continuous on h~Y(W) and a
and Tf/(f o k) coincide on h~1(W). This completes the proof. 03

REMARK: The following example shows that the subset Y of ¥ may not be
closed. Let T be the isometric embedding of Cg(N) into C(N U {=}), where N are
the positive integers. It is easy to check that Yo=N.

COROLLARY: If there exists a linear isometry T of a completely regular sub-
space A of Cy(X) onto such a subspace B of Co(Y), then there is a homeomorphism
h of Y onto X and a continuous map a: Y — K, |a| = 1, such that

(TH(y) = a(y) f(h(y)) forally € Y and all f EA.

Proof: Let us consider the inverse of T, T~1, which is an isometry of B onto
A. As in the proof of the theorem above, we obtain a subset X of X and a contin-
uous map k of X onto Y. Given yg €Y, there exists xy € Xo C X such that k(xq) =
yo Hence, |T1g(xg)| = |g(ro)| for all g EB. Thus, [T X(Tf)(xo)|= | Tf(yo)| for all
fEA,ie, y)Ely, This implies both that Yy =Y and that the inverse of & is the
continuous map k, which is defined on X, = X. Summing up, & is a homeomor-
phism of ¥ onto X and the remainder of the proof follows from the theorem
above.
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The Gleason Cover of a Flow
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ABSTRACT: We prove the existence and uniqueness of projective covers in the category of
flows with perfect flow maps. The main point is that Gleason’s classical results on the existence
and uniqueness of the projective cover of a compact Hausdorff space hold when all spaces are
equipped with (a fixed monoid of continuous) actions and all maps are required to respect them.

1. INTRODUCTION

In his celebrated paper [21], Gleason not only showed the existence and
uniqueness of projective covers in the category of compact Hausdorff spaces and
continuous maps, he characterized them as precisely the extremally disconnected
spaces in that category. The corresponding characterization in flows is much
harder, and we take pains in this article to elucidate some of the subtleties in-
volved by analyzing several examples. In fact, this paper is the first of several
[6], {71, [8], [9] whose common objective is the aforementioned characterization.
We must confess, however, that we have not altogether realized this objective at
the time of this writing.

Before describing our results we need some definitions and notation. The cat-
egory of Hausdorff topological spaces with continuous functions will be denoted
Sp, while K, and Tych denote the full subcategories of compact and Tychonoff
spaces, respectively. (Unless otherwise noted, we assume throughout that spaces
are Hausdorff and that maps between them are continuous.) We reserve the letter
T to denote a fixed topological monoid with identity, whose elements we term ac-
tions. We say that T acts on a space X if there is a monoid homomorphism ¢y: T
— homg,(X, X). We suppress mention of ¢y, writing ¢x(¢) as ty or simply £, and
denote the action of 7 on x by x. In this notation, T acts on X if 1x =x for all x €
X, where 1 is the monoid identity, and (¢12)x = £;(tox) for all £1,6, €T and xEX.

Two special actions deserve mention. We say that T acts trivially on X if tx =
xforall tET and xE X, i.e., if oy(¢) =1 for all t ET. And if T= {1} is the trivial
monoid then we are in the classical situation of no (nontrivial) actions, and our
development reproduces the Gleason cover.

A flow is a pair (X, e), where X is a space on which T acts in such a way that
the evaluation map e: T x X — X (defined by e(, x) =1x) is continuous. Usually
the map e is clear from context, so we refer to the flow (X, e) as simply X. A flow
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Key words and phrases: flows, projective cover, absolute.
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morphism (or flow map) f : Y — X is a continuous function between flows which
commutes with the actions, i.e., f(¢ty) =tf(y) forall yEY and t €T. We denote the
category of flows and flow maps by TSp, and we likewise define TK and TTych.

A subspace Z of a space Y on which T acts is T-invariant if zE Z forall z€EZ
and t €T. A T-invariant subspace of a flow is called a subflow. Amapf:Y— X
is T-irreducible if it is a surjective flow function which maps no proper closed
subflow of Y onto X. Clearly T-irreducibility reduces to the usual notion of irre-
ducibility in the case of no actions. If fand g are T-irreducible and if fis closed
then gf is T-irreducible; conversely, if gf is T-irreducible and if f is onto, then f
and g are T-irreducible. We say that a flow Y is a (proper) T-irreducible preimage
of X if there is a (noninjective) T-irreducible flow map f: Y — X.

Recall that a continuous function f: Y — X is perfect if it is a closed map such
that f‘lx is compact for each x €X. If f and g are perfect maps then gf is perfect;
conversely, if gf is perfect then fis perfect, and also if f is surjective, then g is
perfect [22, Section 2]. When the morphisms are required to be perfect, the nota-
tions for the categories corresponding to those mentioned above are TSpP, and
TTychP.

An object P in a category C is a projective if P € C, and, if for every fand g in
C, f surjective, there is some k in C which makes the diagram commute. If C is a
category of flows then we say that P is the projective cover (or absolute or T-

Y
amri

P X

Gleason cover) of X € C if P is a projective in C and there is a perfect T-irreduc-
ible map f: P — X. We denote the projective cover of the flow X by yx.1

We can now describe our results and the organization of the remainder of this
paper in more detail. When the action monoid 7 is actually a compact topological
group and X is a compact Hausdorff flow, we provide in Section 2 a complete
characterization of the projective cover of X. These results recapture Gleason’s
by taking T = {1}. In Theorems 2.6, 3.8, and 3.9, the main results of this paper,
we prove the existence and uniqueness of the projective cover in the categories
TK and TTychP.

Sections 4 and 5 may be read independently of Section 3 if the reader is willing
to accept the existence and uniqueness of the projective cover. We show in a very
brief Section 4 how the universal minimal flow of a topological semigroup can
be constructed as a projective cover. In Section 5 we give a number of examples
which illustrate both the scope of our results and the difficulty of providing a
characterization of the projective cover of a flow in the same spirit as that of the
no-action Gleason cover. We also provide Examples 5.1 and 5.4, which show that

IThe notation yTXis actually somewhat ambiguous, since the same monoid T can act on
the same space X in different ways. But we trust that it can be used without confusion in

the sequel.
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the characterization of the projective cover when T is a compact group given in
Section 2 is no longer valid when either the action monoid is not compact or not
a group. We also show in Example 5.6 that the projective cover can have surpris-
ing and unexpected properties.

In Section 6 we provide an “algorithm” for constructing the projective cover
for compact flows and for arbitrary monoids. This procedure is summarized and
captured in what, for obvious reasons, we have named the Wretched Diagram.
(See Subsection 6.3 and Theorem 6.6.) We believe that, in spite of its wretched-
ness, the diagram sheds new light on the structure of the projective cover, and we
show how many of our earlier results (e.g., in the compact group case) and some
new ones can be recovered from this general algorithm. For example, in Theorem
6.9 we derive the result of Balcar and Franek [3] that a universal minimal flow of
a discrete semigroup is extremally disconnected. Finally, Section 7 contains a
brief discussion of open problems.

2. A COMPACT GROUP OF ACTIONS

The most straightforward case is that in which the monoid of actions is a com-
pact group. The importance of this case is twofold. First, we are able to charac-
terize the projective objects in TK completely in terms of known objects, such as
classical Gleason spaces and T itself, and second, this case points out the prob-
lems inherent in the general situation. Accordingly, throughout this section we
assume that T is a compact group.

Suppose that X € TK. Define an equivalence relation ~ on X by x; ~ x; if and
only if x5 = txy for some t ET. Let X/T denote the quotient space, and let g: X —
X/T denote the quotient map.

LEMMA 2.1; If X € TK then X/T is a compact Hausdorff space. Furthermore,
when X/T is equipped with trivial action, the quotient map ¢ becomes a T-irre-
ducible flow surjection.

Proof: First note that each equivalence class [x] =Tx={Tx: (€ T} is com-
pact. So consider x € X and open set U containing [x]. Put K = X\U. Then TK is a
closed subset of X and TK N [x] =@. Put V=X\TK. Then TVC Vand [x] CVCU.
Thus by Kelley [26, p. 148] X/T is Hausdorff. And it is clear that g is a T-irre-
ducible flow surjection. O

We continue by examining the case in which T acts trivially on Y € TK. In this
case we can consider T x Y to be in TK also by defining the action of t €T to be
i(t1, y) = (tt1, y). Then the projection map p: TxY — Y, defined by p(t,y) =y, is a
flow surjection which is T-irreducible because T is a group.

LEMMA 2.2: Suppose that T acts trivially on the compact flow Y. Then any
flow surjection f € TK “drops” to a unique flow surjection g which makes this
diagram commute.Furthermore, fis T-irreducible if and only if g is T-irreducible.



16 ANNALS NEW YORK ACADEMY OF SCIENCES

X———TxY

| )

X/T———y

Proof: Let h denote pf, and consider x €X, f(x) = (¢, y) and t ET. Then
f(ex) = 1f(x) = (113, y),

o h(tx) =y = h(x). This shows thatgls well-defined. Now let U CY be open. Then
f 1yis open if and only if q'lf' U is open if and only if A~ U is open, which it
is. Thus fis continuous. If fis T-irreducible then, because p is T-irreducible and
fis closed, h is T-irreducible. Since & = gq and g is onto it follows that g is T-
irreducible. Conversely, if g is T-irreducible then, because g is T -irreducible and
closed, h is T-irreducible. Since h = pf and f is onto, it follows that f is 7-
irreducible. QO

PROPOSITION 2.3: Suppose T acts trivially on the extremally disconnected
compact Hausdorff space Y. Then the flow T x Y has no proper T-irreducible pre-
images.

Proof: Assuming the notation of Lemma 2.2, suppose that fis a T-irreducible
surjection. Then g is also a T-irreducible surjection, and since the action is trivial
on both X/T and Y, g is irreducible in the ordinary sense. Since Y is extremally
disconnected it follows [34, p. 285] that g is a homeomorphism. What we must
do is show that fis injective. To this end consider x; € X such that f(x1) = f(x;) =

(t1, ¥)- Then gq(x1) = gq(x,), and so g(xq) = q(x,) since g is a homeomorphism.
Hence there exists £ € T such that £xq = x5. But now

(11, ¥) =f(xp) = f(txy) = tf (x1) = (1, ¥) = (1, y),
so t1 =tt1. Since Tis a group, t=1p, andsox; =x,. Q

Proposition 2.3 is one key to the T-Gleason cover of a compact flow. The other
key is a result which says that any two T-irreducible maps onto the same compact
flow have a common ancestor.

LEMMA 2.4: For every pair of T-irreducible maps f; in TK with common
codomain there exists a pair of T-irreducible maps g; in TK with common domain
which make the diagram commute.

A |

Yi—X
1
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Proof: Let W={(y1, y2) EY1x Y5: fi(y1) =fo(y3)}. Then W€ TK if we de-
fine #(y1, y2) = (ty1, tys). Let g;: W——> Y, denote the projection onto Y; fori=
1, 2, and let f = f1qq = fg,. Using Zorn’s lemma, select a closed T-invariant sub-
space ZC W minimal with respect to f(Z) =X. It is easily checked that we are done
if we define p;=¢;|Z. Q

PROPOSITION 2.5: Suppose T acts trivially on the extremally disconnected
compact Hausdorff space Y. Then T x Y is a projective in TK.

Proof: Consider the test maps f and g. By Lemma 2.4 there are T-irreducible
maps p; in TK which make the diagram commute. But pq is a flow homeomor-

Z._._pi_.y
P1 k f
TXY—g—*X

phism by Proposition 2.3, hence the desired map is k =p2p1'1. a

We have now assembled the machinery necessary to state and prove the main
result of this section. Let us denote the Gleason cover of the compact Hausdorff
space Y by 7Y. For a given XETK let g: X — X/T =Y denote the quotient map.
Regard both Y and yY as objects in the category TK, with T acting trivially on
both, and let P denote the product flow T x yY, which is a projective in TK by
Proposition 2.5. Let y : yYY — Y denote the Gleason map, and let p :P — yY be the
projection map. The composition yp is T-irreducible since the factors are closed

1%
P— X
P q
Y ——

W —~Y

and T-irreducible; let yF be a flow map produced by the fact that P is a projective.
Since g is surjective and v¥ is closed, y; is onto, and hence T-irreducible. We
have proved the main theorem of this section.

THEOREM 2.6: Suppose that T is a compact group acting on the compact flow
X. Then the projective cover of X in TK is

VX =T xy(X/D),
and '& is the canonical T-irreducible surjection onto X.

We give some simple corollaries of this result. Note that the first of these can
be proved simply and directly.
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COROLLARY 2.7:  Let T be a compact group, acting on itself by left multipli-
cation. Then yTT =T.

Proof: The space T/T has one element, hence is extremally disconnected.
The result follows immediately. QO

COROLLARY 2.8: Let T be a compact group, acting on itself by conjugation.
Then yTT =T xyT¢, where T° denotes the compact space of conjugacy classes of
T, and the action is trivial on the right coordinate and left multiplication on the
left coordinate. In particular, if T is Abelian then yTT =T xyT. If T is finite and
Abelian, then y/T =T x T.

COROLLARY 2.9: The projectives in TK are the flows of the form T x Y,
where Y is an extremally disconnected compact Hausdorff space, and where the
action is left multiplication on the left coordinate and trivial on the right coordi-

nate.

We can recast these results in terms of a natural ordering of the T-irreducible
preimages of a single compact flow X as follows. Suppose f; : Y; — X are two T-
irreducible maps in TK. Let us agree to say that Y; =Y, if there is a T-irreducible
map g: Y; — Y, such that f,g = fi. This relation imposes a preorder on the class
of T-irreducible preimages of X in TK.

COROLLARY 2.10:  Forevery XE€TK there are Y,Z E€TK on which T acts triv-
ially such that Z is extremally disconnected and Y <X =T x Z. X and Z are unique
up to homeomorphism with respect to these properties. Furthermore, T x Z is an
upper bound of all the upper bounds of X, and Y is an upper bound of all the lower
bounds of X on which T acts trivially.

We close this section with a question. What are the equivalence classes of this
preordering? That is, what can one say of two T-irreducible preimages Y7 and Y,
of a compact flow X if Y; 2 Y, and Y, = Y;? In particular, are they flow homeo-
morphic? In the irreducibility ordering on compact Hausdorff spaces (with no ac-
tions), the map which witnesses the fact that Y7 = Y, is unique [22}, and all
members of a preorder class are homeomorphic. It is easy to find examples in
which the flow map which witnesses Yq =Y, is far from unique, yet we know of
no instance in which members of a preorder class are not flow homeomorphic.

3. THE EXISTENCE AND UNIQUENESS OF THE PROJECTIVE COVER

In this section we prove the existence of the projective cover in the categories
TK and TTychP. The method of proof is to construct the projective cover of the
flow X by first taking the pullback Z of the perfect T-irreducible preimages of X
and then passing to a closed subflow Zy of Z minimal with respect to mapping
onto X. This approach has the virtues of being ultimately direct and conceptually
simple; it is due to Banashewski [10] and was used by Hager [23] to construct the
classical Gleason cover of a compact Hausdorff space. The approach works be-
cause, though none of the categories of flows we discuss in this article are topo-
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logical in the sense of Preuss [30], they do have several attractive properties
which allow familiar constructions.

(a) All mentioned categories are co-well-powered. That is, for a given flow X
there are (up to flow isomorphism) only a set’s worth of perfect T-irre-
ducible preimages of X. This is a consequence of the fact that there is a
cardinality bound on such preimages (Proposition 3.6).

(b) All mentioned flow categories have pullbacks (Proposition 3.1).

(c) For every TSpP surjection f: Y — X there is an embedding g: Z — Y such
that fg is T-irreducible (Proposition 3.2). Note that Z need not be unique.

3.1. Pullbacks

Suppose we are given a set {f;: i €I} of morphisms with common codomain
in a category C. Consider the class P of families {p,: i €I} of morphisms in C
with common domain such that f;p; =f; p; for all j, j €. Then the pullback of {f; :
i €I} is a member of P which is universal in the sense that for any {p/ i€}EP
there is a unique morphism p such that p;p = p;’ for all i €I. We usually use fto
denote f;p;, whose definition is independent of i, and by abusing the terminology
we refer to the common domain of the p;’s as the pullback of the f;’s. The cate-
gory C is said to have pullbacks if every set of morphisms with common codomain
has a pullback. For example, in spaces the pullback of a set of continuous func-
tions {f;: Y;—> X:i€l} is

Z-= {zEfIIY,- :fi(z) =fi(z) forall i, jET},
with projection maps p(z) = z; for i €1. Note that Z is a closed subspace of ILY;
so that Z is also the pullback in K, the category of compact spaces.
PROPOSITION 3.1: The category of flows has pullbacks.
Proof: Given a set {f; : Y;— X:i€&l} of flow maps, let
{p;:Z—-Y;:i€l}

be the pullback in spaces. In order to make the projections into flow maps we
must define the action of t& T on Z to be

&) =ty;.

Then it is routine to verify that Z is a flow, and that the p;’s are flow maps which
inherit their universality in flows from their universality in spaces. (1

The relevance of perfect maps to our enterprise is provided by the following
observation.

PROPOSITION 3.2: For every perfect flow surjection f: Y — X there is a
closed subflow Y, C Y such that the restriction of fto Yy is perfect and T-irreduc-
ible.

Proof: Let S be the collection of all closed subflows S CY such that f(¥) =X.
We claim that S is closed under the intersection of chains. For if Sy C S is totally
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ordered by inclusion, and if NSy =Sy, then Sy is at least a closed subflow of Y.
Furthermore, f(Sp) =X because for each x € X the compact set f(x) meets each
of the closed sets S € Sy nontrivially, and therefore meets Sy nontrivially. Finally,
it is clear that the restriction of a perfect map to a closed subspace is perfect.

The pullback of perfect continuous functions has projections which are perfect
continuous functions. This result is folklore; we prove it here in the interests of
a self-contained treatment. It requires a preliminary lemma.

LEMMA 3.3: Suppose we have a collection {Y;: i €I} of spaces, and for each
i €1 a compact subspace C; CY;. Let Y denote [[;¥; with projection maps p;: ¥ —
Y;, and let C = [[,C;. Then any neighborhood of C contains a neighborhood of the
form nlop,-‘l(Ui) for some finite Iy C J and collection {U;: i € Iy}, each U; a
neighborhood of C; in Y;.

Proof: We prove this lemma first for finite index sets by induction on 1. It
[I] = 1 we can take Uy = U. Assume now that the lemma holds for index sets of
cardinality n, and consider a collection of spaces {Y;: 1 <isn+ 1} with compact
subspaces {C;: 1 =i sn + 1}, and neighborhood U of [[j <i<n+1Ci- Let Y =
IMi<i<nY; and C =[]j <; <nC;- We claim that for each ¢ € C there are neighbor-
hoods W(c) of ¢ in Y and V(c) of C,,,; in ¥, , 1 such that W(c) x V(c) CU. This is
true because for each c, , 1 € C,, 1 there are neighborhoods R(c, , 1) of ¢ and
S(cp41) Of Cjy 4 1 such that R(c, 4 1) xS(c,+1) CU; since Cp, 1 is compact, a finite
number of the S(c, , 1)’s cover it, and we may take V(c) to be the union of these
S(c,+1)’s and W(c) to be the intersection of the corresponding R(c,,1)’s. We next
claim that there are neighborhoods Wof Cin Yand Vof C, 1 in Y, 1 such that
W x V C U. This is true because C is compact and therefore covered by a finite
number of W(c)’s; take W to be the union of these W(c)’s and V to be the inter-
section of the corresponding V(c)’s. Finally, use the induction hypothesis to get
neighborhoods U; of C; in Y; for 1 <i=n such that []; ;. ,U; CU, and set U, ¢
=V. Then

c;c 1 Uucu.
lsisn+1 lsisn+1

If the index set is infinite, then because C is compact, any neighborhood of it
contains a neighborhood which is a finite union of basic open sets in the product.
But such a neighborhood depends on only a finite set of indices, and so the argu-
ment of the previous paragraph applies and yields the desired conclusion. [

PROPOSITION 3.4: If {f;: i €I} is a set of perfect surjections with common
codomain, then its pullback {p;: i € I} in spaces is a set of perfect surjections,
and f=f,p; (independent of i E]) is perfect.

Proof: Let Y; denote the domain of f; and X its codomain. Consider the pull-
back Z to be a subspace of Y = [[;¥; as above. Observe first that for any point
x €X, f~1(x) is homeomorphic to the compact space [If; ~1(x). To show f closed
consider a closed subspace D CZ and point x €X\f(D). By Lemma 3.3 applied to
the neighborhood Y\D of f~Yx) , there is a finite set [o C 1 and collection {U;:
i€y}, each U; an open neighborhood of f; ~1(x) , such that
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i cNpl(u) Sx\D.
Iy

But for each i € I the closure of f; implies that
Vi={x €X: £, I () CU} =X\fi(Yi\U)

is a neighborhood of x. But then V= ﬂ, V; constitutes a neighborhood of x which
is disjoint from f(C), for if f(y) =x' € Vthen y, Ef; “1(x") C U, for all i €I, mean-
ing y & C. This completes the proof that f is perfect, from which it follows that
each f; and p; is perfect. 1

The pullback of T-irreducible maps typically has projections which are not T-
irreducible. Nevertheless, by Proposition 3.2 we can find a subflow of the pull-
back on which the restrictions of the projections are T-irreducible. What we lose
in passing to the subflow is the universal property of pullbacks.

PROPOSITION 3.5: Given a set {f; : i €I} of perfect T-irreducible maps with
common codomain there is a set {p;': i € I} of perfect T-irreducible maps with
common domain such that f;p;' = f;p for all i,j €1. In this case f=f;p;is also per-
fect and T-irreducible.

Proof: LetY; denote the domain of f;, {p;: i €I} the pullback in flows, and
Z the common domain of the p;’s. Then use Proposition 3.2 to find a subflow Zy
and insertion map j: Zg— Z such that fj is T-irreducible. Then the desired maps

are p;/ =p;j. Q

The next ingredient in the proof is a cardinality bound on the T-irreducible pre-
images of a given flow. The ideas involved in this observation are a special case
of the more general Wretched Diagram Theorem to come in Section 6.3.

PROPOSITION 3.6: For any T-irreducible map f: Y — X,
|Y| < 22K ’ lTl
where k is the least cardinality of a subspace Xy C X for which

TXg=e(TxXg)={tx:t€T, xEXg}

is dense in X.

Proof: Let X, be a subspace of X of cardinality x such that X is dense. For
each x € X, choose y, €Y such that f(y,) =x, let Yy = {yy: xEXy},and let Y =
TYy. Then Y' is a subflow of Y which maps onto TX, and its cardinality is bound-
ed by x - |T|. Since clY" is a closed subflow which maps onto X, it follows from
the T-irreducibility of f that ¥ is dense in Y. Since each element in Y can then be
associated with the trace of its neighborhood filter on Y’, the result follows. [

3.2. The Projective Cover

We have now assembled the machinery necessary to prove the existence of the
projective cover of a flow. We shall need the following simple tree lemma. A for-
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est is a partially ordered set in which the set of predecessors of any element is
well-ordered. A tree is a forest with a least element called the root, and any forest
is a union of trees. The level of an element of a forest F is the order type of its
predecessors, and the a-th level of F is the set of elements of level a. The height
of F is the least ordinal greater than the levels of all its elements. We say that F
branches at level o if there is some a € F of level a for which there are at least
two successors of level a + 1. A path through F is a maximal totally ordered sub-
set. We leave the straightforward inductive proof of the following lemma to the
reader.

LEMMA 3.7: If a forest of height x has branching at every level, then there
are at least |k| paths through it.

THEOREM 3.8: Every flow has a perfect T-irreducible preimage which itself
has no proper perfect T-irreducible preimage.

Proof: 1f a flow X had no such preimage, then we claim that we couid find
perfect T-irreducible preimages of X of arbitrary cardinality as follows. The idea
is to inductively define proper perfect T-irreducible maps p®: Y, — X for each
ordinal @, and to simultaneously define perfect T-irreducible surjections pﬁ“: Y,
— Y for all B < a, preserving as we do so the compatibility conditions

pPpe® =p2 and  pPpg® =p® forall a>B>y.

Let p° be the identity map on Y =X, and suppose that Pvﬁ and pB have been de-
fined for all a> B >y. If =B +1 then, since Yy is a perfect T-irreducible preimage
of X, it has a proper perfect T-irreducible preimage, and we choose any one to be
pp®: Yo — Yp. Then define p* =pﬁpﬁ°‘ , and define p,* =p¥ﬂ pp” for all B>y If
a is a limit ordinal then let {pg®: B < a} be the perfect T-irreducible maps with
common domain Y, given by Proposition 3.5 from the set {p®:B < 0}, and set
¢ =pﬁpﬁ°‘ , independent of B <.

To complete the argument note that the cardinality of Y, is at least that of a.
For F = Uﬂ <aYp carries 2 natural forest ordering given by y, <y if and only if
¥ EY,, ypEYp ¥ < B, and pY'3 (¥p) =yy- Each path through this forest corresponds
to a nested collection of compact subsets of Y, and this collection has nonempty
intersection in Y. Furthermore, distinct paths contain elements corresponding to
disjoint sets in Y, and so have intersections which are disjoint in Y,. The cardi-
nality claim then follows from Lemma 3.7. But the claim itself is inconsistent

with the cardinality bound of Proposition 3.6.

The next order of business is to prove the uniqueness of the projective cover
of a flow. We shall call two flow surjections f;: Y; = X equivalent if there is a
flow homeomorphism g: Yy — Y, such that f; = f,¢.

THEOREM 3.9: For every flow X there is a flow map f : Y — X which is unique
up to equivalence with respect to the following equivalent properties.
(1) A flow map g: Z— X is perfect and T-irreducible if and only if f= gk for
some flow surjection k.
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(2) fis perfect and T-irreducible, and Y has no proper perfect T-irreducible
preimages.

(3) fis perfect and T-irreducible, and Y is a retract of any space which maps
perfectly onto it. That is, for any perfect flow surjection Y there is a per-
fect flow embedding i: Y — Z such that gi = 1y.

(4) f is perfect and T-irreducible, and Y is a projective in the category of
flows and perfect flow morphisms. That is, for any perfect flow maps g
and g such that g is surjective there is a (perfect) flow morphism & such
that gk =gq.

zZ

k g

Y ——W

Proof: We established the existence of a preimage satisfying (2) in Proposi-
tion 3.8, so it remains only to prove the equivalence of the conditions. Suppose
that f satisfies (1). We know from Proposition 3.8 that X has a perfect T-irreduc-
ible preimage g: Z — X which itself has no proper perfect T-irreducible preim-
age, and so f = gk for some flow surjection k£, which must be perfect and T-
irreducible. It follows that Y is equivalent to Z, and we conclude that fand Y sat-
isfy (2). If f and Y satisfy (2), and if g: Z — Y is a perfect surjection, then by
Proposition 3.2 there is a closed invariant subspace Zy & Z such that glZyis a per-
fect T-irreducible surjection. But then g|Zg is a homeomorphism, and the desired
embedding is its inverse.

Now assume (3), and suppose that we are given perfect flow maps g and q as
in (4). Let V be the pullback of g and g with projection maps pz and py, so that
gpz = qpy- Then these projections are perfect by Proposition 3.4, and py is surjec-

Pz
V—2
pri|: kL |9
Y——q——’W

tive because for any y € Y there is some z € Z such that g(z) =q(y) , hence v =
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(v, z2) €V and py(v) =y. Therefore, by (3) there is an embedding i such that pyi
= 1y. Then we have the map k = pzi such that

gk=gpzi=qpyi=g,

which shows that Y is projective. To complete the proof observe that the nontriv-
ial implication in (1) is a special case of (4). QO

4, UNIVERSAL MINIMAL FLOWS

In this very brief section we show that the existence and uniqueness of univer-
sal minimal flows follows easily from the considerations of Section 3 above. In
this section T is an arbitrary topological monoid. Following Auslander [1], we
call a flow X € TK minimal if for all x €X, Tx = {tx: t €T} is dense in X. A min-
imal flow Y € TK is a universal minimal flow if, for every minimal flow X, there
is a surjective flow map f: Y = X.

Let {*} be a one point space, and let T act on {+} in the only way possible,
namely trivially. The following two easy results establish the connection between
projectives and universal minimal flows, and provide an alternate method of
proving the existence and uniqueness of the universal minimal flows. The proofs
are straightforward so we omit them.

LEMMA 4.1: Let T be a topological monoid and X € TK. Then the following
are equivalent.

(1) X is a minimal flow.

(2) The collapsing map c¢: X —> {e} is T-irreducible.

THEOREM 4.2: Let T be a topological monoid and X € TK. Then the following
are equivalent.

(1) X is the unique universal minimal flow.

(2) X is the T-projective cover of {e}.

We denote the space X satisfying Theorem 4.2 as T.

5. EXAMPLES OF PROJECTIVE COVERS

At this point we have established the existence and uniqueness of the projec-
tive cover in the category TTychP. We have also provided a characterization of
projectives in TK in Theorem 2.6 as being precisely the flows of the form T x ,
where Q is an extremally disconnected compact space, and where T acts on the
left factor by left multiplication and the right factor trivially. Here we provide
examples which show that certain natural conjectures about projectives fail when
the assumptions on T are relaxed somewhat. The techniques used in this section
are ad hoc. We begin to remedy this example-by-example approach in Section 6.3
below.

EXAMPLE 5.1: The group assumption is necessary in Theorem 2.6.
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Proof: Let T={1,t}, with unit 1 and 12 = ¢, with discrete topology. Let T act
trivially on the one point space {*}. Let f: Y — {e} be T-irreducible and y €Y.
Then it is easy to see that {ry} is a closed subflow of Y for which f{try} = {=}.
Since fis T-irreducible, Y = {ty}, so Y is a one point space. Observe that, by way
of comparison, if the group Z, acts trivially on {}, the projective cover is Z, x
{e}orjustZ,. Q

The next example is considerably more important and illustrative, because the
monoid T is the discrete group of integers Z, the space X is compact, yet the pro-
jective cover is not a product. Of course, action by Z represents forward and re-
verse iteration by a nonperiodic homeomorphism. Before presenting the example,
we need one (well-known) lemma and a (well-known) consequence.

LEMMA 5.2: Let X be compact, and let j: X x Z — B(X x Z) be the natural
injection. Suppose that X contains a countable set {x,: n € Z} and an element x
which is an accumulation point of the x,’s such that x, = x for all n. Then

{j(e, n): nELY N{j(xp, n): nELY =1.
Here E' denotes the set of accumulation points of the set E.

Proof: Foreachn,letf,: X~ Rbe a continuous function satisfying 0<f, <1,
fu(x)=1and f,(x,) =0. Define F : X x Z — R by F(x, n) = f,(x). Observe that F(x, n)
=1 and F(x,, n) =0 for all n. In particular, after extending F to B(X x Z), we must
have F(v) = 1if v € {j(x, n): n EZ}’, while F(w) =0 if wE {j(x,, n): nE€Z}'. 0O

COROLLARY 5.3: Let X be an infinite compact space. Then (X x Z) and X x

BZ are not homeomorphic. Also, there is a continuous surjection B : B(X x 7)—X
x BZ.

Proof: (See also [34, Chapter 8]). Consider the following diagram. Here, i
B(X x Z)

j &

X XZ— X xpZ
1

and j are the natural injections of X x Z into X x BZ and (X x Z), respectively, and
B is the extension of i. Select a countable set in X and an accumulation point of
this set which satisfy the assumptions of Lemma 5.2. Then observe that the func-
tion F from Lemma 5.2 does not extend to a continuous function on X x Z. Q

EXAMPLE 5.4: If T acts trivially on X in TK, and X is extremally disconnect-
ed, then yTX need not be T x X.

Recall that 2 denotes the Z-projective cover of the one point space {*}, where
Z has the discrete topology (Theorem 4.2). Now let Z act trivially on the space
BZ, on Z x BZ by the rule z(x, y) = (zx, y) for zE Z and (x, y) EZ x BZ, and on
B(ﬁxZ) by the continuation of the actions on 2 x BZ. Since Z is discrete, evalua-
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tion of these actions is continuous and these spaces are in fact flows. Then one
easily establishes the following claims, whose proofs are briefly sketched below.

(1) The projection map p : 2 x BZ — BZ is Z-irreducible.

(2) The injection i: 2x7-17x BZ extends to a flow map B: B(Z x Z) -2
BZ. The map P is Z-irreducible and is not a homeomorphism.

3) (3(2 x Z) is the Z-projective cover of BZ.

Proof: (1) Itis clear that p is a flow map. If K is a closed subflow of 2 x Bz
such that p(K) = pZ then for each y € BZ there is an x €2 such that (x,y) €K. Then
Z(x, ¥) = (Zx, y) is a subset of K which is dense in 7 x {}.

(2) The first part of the assertion is routine: since Z is discrete one need only
verify that Z acts on ﬁ(Z x Z). Also, since z(Z x Z) is open and dense in 2 x BZ, B
is Z -irreducible. And since the spaces B(Z x Z) and 2 BZ are not homeomorphic,
Corollary 5.3 (with X = 2) implies that B is not a homeomorphism. (See also [34,
Chapter 8]).

(3) LetYbe acompact flowandf:Y— S(Z x Z) a Z-irreducible map. For each
zE Z let Y, denote f~ 1(Z {z}) and f, the restriction of fto Y,. Observe that each
Y, is a clopen subflow of Y on which f, is Z-irreducible, hence a flow homeomor-
phism. Let g,: 7 x {z} —> Y, be the inverse of f,, and define g: ﬁ(l x Z) = Y by
first defining g on 2xz by g(w, z) = gw) and then extending it to B(Z x Z). Then
g commutes with the actions because each g, does, and since fg is the identity on
the dense subset 2x7 C ﬁ(Z x Z), it follows that fg is the identity map. Thus
[S(Z x Z) is the Z-projective cover of BZ by Theorem 3.9(3). Q

The existence of a minimal dense open subflow of BZ is the crucial feature of
the above example. By arguing exactly as in Example 5.4, one can establish the
following theorem. We are obliged to confess, however, that we are at present un-
able to characterize the Z -projective cover of an arbitrary compact flow X on
which Z acts trivially.

THEOREM 5.5:  Suppose that T is a discrete monoid which acts trivially on
the compact flow X, and suppose further that X has a dense discrete subspace S.
Then

vTX = BT x ).

It is instructive to attempt to replicate the process used in Example 5.4 when
Z is replaced by an infinite compact group T acting trivially on Z. After all, we
have shown that in this case the projective cover is T x BZ and not B(T x Z). So
suppose that BZ is a flow on which T acts trivially. It is easy to see (Corollary
5.3) that B(T x Z) = T x BZ, T acts on B(T x Z), and there is a surjective map (T x Z)
—» T x BZ which respects the actions by T.

However, (T x Z) is not a flow. Indeed, let (¢4, n,) be a net in T x Z such that
to—> 1,ty=1forallaandng— z€ B(Z)\Z. To see that such a net exists, observe
that there is a countable set {¢,/: n €EZ}, ¢,/ = 1 for all n, which clusters at 1 ET.
Let {t,:c € D} be a net in this set converging to 1. Put w,’' = (t,', n) € (T x Z)
and let wy = (t,, , Bg) be the corresponding net in B(T x Z). Pass to a subnet if nec-
essary (and rename the directed set) so that n, — z€ BZ. It is immediate that z&€
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B(Z)\Z. The argument given in Lemma 5.2 (with X = T) shows that (t4, ng) # w
in B(T x Z), where w =1im(1, ng). So, t, = 1and (1, ny) = w, but

to(1, ng) =(to; no) 7> 1w =w.

This shows that the evaluation map is not continuous and that B(T x Z) is not a
flow.

EXAMPLE 5.6: Here is a brief example which further illustrates the difficulty
of characterizing the projective cover. The details of this example are given in
the paper [8].

Let IT be the group of permutations of the integers Z under composition. To-
pologize I1 by using as neighborhoods of x €11 sets of the form

Ny ={n':n'(i) =n (i) Vi,-msism}

for m € N. With this topology, II is a topological group. Let o: Z — Z be given
by o(i) =i + 1. Then we show using Ramsey’s theorem [31] that o has fixed points
when II acts onTL (Recall thatIl is the projective cover of the trivial action of II
on a one point space.) The point here is that even thoughII is a projective flow,
the action of IT is not free in the sense of Auslander [1], i.e., some of the permu-
tations have fixed points. This again shows that a characterization of the projec-
tive cover cannot be simple.

6. ANOTHER CONSTRUCTION OF THE PROJECTIVE COVER

6.1. The Free Flow Over a Space

Every space can be embedded in a flow “as freely as possible,” and uniquely
at that. Given a space X, let TX denote the flow T x X, with actions defined by the
rule (¢, x) = (¢t', x). Letty: X — T x X be the embedding given by tx(x) =(1, x).
Then X is the free flow over the space X in the following sense.

PROPOSITION 6.1: For any space X there is a flow ©X and an embedding Ty
such that any continuous function f from X into a flow Y extends uniquely to a
flow morphism tf which makes this diagram commute.

X
TX Tf
X—Y

f

Proof: 1f tf is to commute with the actions then we must have

Tf(t, x) = () t(1, x) = (zf) try(x) =t(tf) Tx(x) =tf(x).
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But if we take this as the definition of tf then it is easy to check that it is a flow
map. QO

6.2. The Stone-Cech Compactification of a Flow

A crucial feature in the construction in Section 6.3 is the appropriate general-
ization of the idea of the Stone-Cech compactification to the context of flows.
This topic is treated in detail in the paper [6]. Here we content ourselves with a
brief discussion of the results from that paper which are needed for this one.

Let X be a flow in TTych and f: X — R a bounded continuous function. We
say that f is T-uniformly continuous if for every € >0 and ¢ € T there exists a
neighborhood T, of ¢ such that, forall ¥ €T, and xEX,

| (%) ~f(e0)| <.
One immediately establishes the following.

LEMMA 6.2: Every bounded continuous real-valued function on a compact
flow is T-uniformly continuous.

Let CTX denote the set of bounded T-uniformly continuous real-valued func-

tions on the flow X. To construct the Stone-Cech compactification of a compact
flow X, consider the set

F={feCTXx:0=<f(x)s1 VxEX}.
Consider the map
irX— [0,1}F

defined by (ix)f=f(x) for f€ F. Define the Stone-Cech compactification of the
flow X by setting

BTX =cl(iX) ,

where cl denotes the closure in [0,1]f. Let us also define the map BXT: x— plx
in the obvious way, namely as the codomain restriction of i. The next result shows
that the Stone-Cech compactification possesses the expected universal proper-
ties.

LEMMA 6.3: Let X and Y be Tychonoff flows.

(1) Then BTX is a compact flow and Byl : X — BIX is a flow map onto a dense
subflow of BTX.

(2) If X is compact then BXT:X-—> BIX is a surjective flow homeomorphism.
We write (by abuse of notation) BTx = x.

(3) Letf: X — Y be a flow map. Then flifts to a unique flow map BTf: pTx
- ﬁTY such that the following diagram commutes:
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ﬁT XE_T_f, ,@T Y
% By

X —T’ Y
We call a flow X compactifiable if the map [SXT is a homeomorphic embedding.
Part (2) of this lemma says that compact flows are compactifiable. But in general
the map ﬁXT need not be injective; there are flows (even in TTych) which are not
flow homeomorphic to a dense subflow of a compact flow. In other words, there
are noncompactifiable flows. (See [6] for examples.) For us, the following result
suffices.

LEMMA 6.4: The following are equivalent for a flow X.

(1) X is compactifiable.

) B T is a bicontinuous injection, i.e., a subspace insertion.

(3) C'X separates the points of X and determines the topology of X.

A final result in this section states that topological groups are well behaved
with respect to compactifiability. The proof, given in [6, Corollary 6.4], relies on
the fact that certain pseudometrics on T can be shown to be T-uniformly contin-
uous.

PROPOSITION 6.5: A topological group, considered as a flow acting on itself
by left multiplication, is compactifiable.

6.3. The Wretched Diagram

We can construct the projective cover of a compact flow X as follows. Let i:
§ — X be an injection from a discrete space S onto a subspace i(S) CX with the
property that Ti(S) = {ti(s): s €S, t &€ T} is dense in X. Let tS be the free flow
over S, let ﬁTrS be the Stone-Cech compactification of ©S, and let Y be a closed
subflow of 7S minimal with respect to satisfying BTti(Y) = X (Proposition 3.2).
Let k denote the insertion of Y in p7tS and let f denote (BTci)k. This is summarized
in the following diagram, which is that part of the wretched diagram used to con-
struct the projective cover.

S X Y
TS / BTri k
TS p gTrS
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THEOREM 6.6: Y is the projective cover of X.

Proof: To verify that f: Y — X is the projective cover of X consider another
perfect T-irreducible surjection g: Z — X. The full-blown Wretched Diagram
summarizes the entire construction.

il §—*—x Y |ATrj

Because discrete spaces are projectives in spaces, we can find a map j satisfy-
ing gj =i, and j induces tj by the freeness of ©S. Since Z is necessarily compact,

T.

tj in turn induces BTrj. The desired map h = (B/tj)k is surjective because g is T-
irreducible and the entire diagram commutes. [

Several remarks are in order.

(1

@

3

4

The only relevant property of S, aside from the density of Ti(S), is its pro-
jectivity in spaces. But in fact it is enough for § to be projective in K. We
could, for example, take S to be the classical (no action) Gleason cover of
X.

The construction works whether or not tS is compactifiable, i.e., whether
or not [STrS is injective. But we remark in passing that ©S is compactifi-
able if and only if T, acting on itself by left multiplication, is compactifi-
able. This is the case, for example, when T is a topological group by
Proposition 6.5.

The function of the passage to the Stone-Cech compactification is to
restore the quality of perfection to the maps so as to be able to use Prop-
osition 3.2. The maps on the left side of the diagram lack this quality,
while the maps on the right side possess it.

When we take discrete S (and the free flow tS) on the left side of the dia-
gram, we “forget” the topology on X in the process. This seems perplex-
ing at first, until we observe that all continuous functions on X give,
under composition with ti, bounded T-uniformly continuous functions on
1S. Thus BT-I:S carries enough information to “restore” the topology on X.

COROLLARY 6.7: In the terminology of Theorem 6.6, yTX is a flow retract of

ples.

Proof: Replace Z by X in the wretched diagram to get the flow surjection
BTtj, and then use Theorem 3.9(3) to get the desired conclusion. (O
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COROLLARY 6.8: In the terminology of Theorem 6.6, YTX is extremally dis-
connected whenever pTtS is. In particular, if T is discrete then yTX is extremally
disconnected for all compact flows X.

Proof: 1f Tis discrete then ©S=T xS is discrete, hence BTrS = BtS is extrem-
ally disconnected. (1

A special case of Corollary 6.8 was proven by Balcar and Franek in [3]; it is
due to Ellis in the group case.

THEOREM 6.9: The universal minimal flow T of a discrete semigroup T is ex-
tremally disconnected.

We close this section by providing several examples which show how some of
our previous results and some new ones can be derived by applications of the
wretched diagram. In the first, we give another proof of Theorem 2.6, which we
restate: Suppose that X is a compact flow acted upon by a compact group T. Then
VX =T xy(X/).

Proof: In the wretched diagram, replace X by X/T, with trivial action by T,
and replace § by y(X/T). Then ©S = T x y(X/T) is already compact, so ptS = 1S.
Since the map pTti is easily seen to be T-irreducible, Proposition 3.2 gives noth-
ing new. We are done once we observe that any T-irreducible preimage of X is
also a T-irreducible preimage of X/7. QO

PROPOSITION 6.10: Let the discrete group Z act on BZ by addition. That is,
extend the action of addition on Z to BZ. Then y Zp7 = B1.

Proof: In the wretched diagram let § = {0} CBZ and observe that ZS = Z is
dense in BZ. SotS=Z x {0} =Z, and, as above, $*Z = Z. But now the map BLxi:
BZ — BZ is the identity, since it is the identity on the dense subspace ZCBZ. Q

7. THE RECOGNITION PROBLEM

The central open problem remaining from the present work is this: If X is a
compact flow, give necessary and sufficient conditions on X in order that X =y Ty
for some Y & TK. We have solved this “recognition problem” only in certain spe-
cial cases.
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ABSTRACT: By the weak topology on an Abelian topological group we mean the topology
induced by the family of all continuous characters. A well-known theorem of I. Glicksberg says
that weakly compact subsets of locally compact Abelian (LCA) groups are compact. D. Remus
and F.J. Trigos-Atrieta [1993. Proceedings Amer. Math. Soc. 117] observed that Glicksberg’s
theorem remains valid for closed subgroups of any product of LCA groups. Here we show that,
in fact, it remains valid for all nuclear groups, a class of Abelian topological groups introduced
by the first author in the monograph, “Additive subgroups of topological vector spaces” [1991.
Lecture Notes in Math, 1466].

There are several theorems in commutative harmonic analysis which remain
valid for certain Abelian topological groups which are not locally compact. For
instance, the Bochner theorem on positive-definite functions is true for nuclear
locally convex spaces (see [6, Chapter 4, Section 2.3]), while the Pontryagin du-
ality theorem is true for closed subgroups of countable products of locally com-
pact Abelian (LCA) groups (see, e.g., [2] for further references). To treat results
of this type from a unified point of view, the first author introduced in [1] the so-
called nuclear groups, a class of Abelian topological groups which contains LCA
groups and nuclear locally convex spaces, and is closed with respect to the oper-
ations of taking subgroups, separated quotients and arbitrary products (a different
definition, of a nuclear Lie group, had been given in [6, Chapter 4, Section 5.4]).

Nuclear groups satisfy, among other properties, the Bochner theorem [1, The-
orem 12.1] and, under some additional assumptions, also the Pontryagin duality
theorem [1, Corollary 17.3]. From the point of view of convergent series and se-
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quences, properties of nuclear groups are similar to those of nuclear spaces (see
[1, Section 10] and {3]). For instance, every weakly convergent sequence of
points of a nuclear group is convergent in the original topology [3, Theorem 1].

Let G be an Abelian topological group. By a character of G we mean a homo-
morphism of G into the group T = R/Z. By the weak topology on G we mean the
topology induced by the family G™ of all continuous characters of G. Following
[7], we say that G respects compactness if every weakly compact subset of G is
compact in the original topology. It was proved in [7] that closed subgroups of
any product of LCA groups respect compactness. The aim of this paper is to prove
the following generalization of that result:

THEOREM: Nuclear groups respect compactness.

The proof given below is a modification of the proof of the above-mentioned
Theorem 1 of [3]. We apply notation and terminology introduced in [3]. The fam-
ily of neighborhoods of zero in an Abelian topological group G is denoted by
N(G). Given a real number x, we denote by (x) the number y € (%, 4] such that
x -y € Z. For the definitions of a nuclear group and a nuclear vector group we
refer the reader to [3] or to [1, (7.1) and (9.2)]. All vector spaces are assumed to
be real.

LEMMA 1: Let (x,);=1 be a sequence of nonzero real numbers w1th lxg41/%s]
=3 for every s. Then there exists a real number # such that |(tx )| = ; for every s.

Proof: Foreachs=1,2,...,letA;={tER: [{tx;)|= 3} We have to show that
ﬂs 14, = &. All components ofA are closed mterva]s of length 3 2x,71, hence all
components of R\A; are open 1ntervals of length xs -1

Now, choose any component Iy of A;. Since |x2/x1| =3, it follows easily that
I, must contain some component I5 of A,. Similarly, I must contain some com-
ponent /3 of A3, and so on. This allows us to construct inductively a decreasing
sequence of closed intervals (/);_ 1 such that [ is a component of A; for every s;
then N®_ A, D", I,=@. O

Let T: E — F be a bounded linear operator acting between Banach spaces. By
dyT), k=1, 2, ..., we denote the Kolmogorov numbers of T (see [9, p. 308]). The
distance of a point # € F to a subset A of F is denoted by d(u, A). By spanA we
denote the linear subspace of F spanned over A. If K is an additive subgroup of
E, then we denote by Kgf the family of all continuous linear functionals f on E
such that fiK) C Z.

LEMMA 2: Let E, F be Hilbert spaces and T: E — F a bounded linear operator
such that 3y_1kd,(T) < 1. Let K be an additive subgroup of E. Given arbltrary a€E
and r > 0 such that d(Ta, T(K)) = r, one can find an f € K5 with [(f(a))| = } and
171l =4r.

This follows directly from Proposition (8.4) of [1]. The condition 3 kdi(T)
<1 may be replaced by 35 . 1di(T) s c, where c is some numerical constant; it is
enough to apply Theorem 3.1(i) of [4] instead of Proposition (3.11) of [1] in the
proof of (8.4) in [1].

LEMMA 3: Let T: E — F and S: F — G be bounded linear operators acting
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between Hilbert spaces. Suppose that Yp_1kdy(T) s 1 and di(S) — 0 as k — . Let
K be an additive subgroup of E and (a,)}, .1 a sequence in E such that

d(ST(a,, - a,), ST(K))=1, m= n. )

Then one can choose a subsequence (a, )S 10f (a,,) satisfying the followmg con-
dition: to each u €E there corresponds some fEKE such that [(f(u - a, )| = } for
almost all s.

Proof: Suppose that
C = sup d(Ta,, T(K)) < c.
n

We can find a sequence (v,)5 .1 in K such that [|Ta, ~Tv, |l <C + 1 for every n.
Then the set {ST(a, —v,)} 51 is totally bounded, because the condition dy(S) =0
implies that § is a compact operator (see [9, p. 308]). Hence,

Lgl’l;l_})ngo | 8T(a,, — V) = ST(a,-vp) Il =0,

which is impossible in view of (1). Thus C = o, and therefore, we may simply
assume that d(Ta,, T(K)) = ®asn—> .

The rest of the proof is similar to the proof of Lemma 3(b) in [3]. Let M be the
linear subspace of E spanned over K, let N be the orthogonal completion of M in
E, and let ¢ and ¥ be the orthogonal projections of E onto M and N, respectively.

Suppose first that lim sup llyp(a,) Il = «. Then there is a continuous linear func-
tional g on N such that lim sup|gy(a,)| = « (weakly bounded subsets of locally
convex spaces are bounded). We can choose a subsequence (a,, )s= 1 of (a,) such
that [gy(a, D/gw(a,)| =4 for every s. Now, take an arbltrary u €E. Then

ng)(ans+1 - u) |/|81P(ans - u)l =3

for almost all s, say, for s = sg. By Lemma 1, we can find some ¢ € R such that
[(tgp(an, —u))| = 3 for s = 5o, and we may take f=tgy.

Next, suppose that lim sup llyp(a,) Il < «. Choose a sequence (b,); -1 in M with
b, - ¢(a,) — 0. For every n, we have

d(Ta,, TK)) = 1 Ta, - To(a) !l + 11 To(a,) - Tb, || +d(Th,, T(K)),
l Ta, - To(a,) | < ITI - lla, - d(a,) |l = NTH - Hpap) I,
1 To(ay) = Th, Il < 1T - 11 ¢(a,) — by 1.

As d(Ta,,, T(K)) = =, it follows that d(Tb,, T(K)) — .

Choose an index nq such that d(Tb,,l, T(K)) >2. By Lemma 2, there is some g
€Kiy with l(gl(bnl))| Land llg Nl s4-271 Asb n Espank, we can find a finitely
generated subgroup Kl of K with b € M= spanK,. Then we can find an_ index
ny such that d(Tb,, , T(K + My)) > 2 and, by Lemma 2, some g, € (K +M1)M with
|(g2(by))| = 3 and ligoll <4+ 272. By repeating this procedure, we construct by
induction a sequence M; CM, C ... of finite- dlmensmnal subspaces of M, a sub-
sequence (bp )= 1 0f (by) and a sequence gSEKM such that b, €M, |(gs(b, ))|

s 8s+1(Mg) ={0} and ligll s4-27° for every s.

Now, take an arbitrary u €E. We can find a positive integer p such that || q)(u) Il
<27 -7 and 16, ~ dlan) Il < 2P~ 7 whenever s = p. If x,y € R and [{y)] = ;, then
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there is a coefficient ¢ =0, 1 with |(x + £y)| = ;. Therefore, we can construct in-
ductively a sequence fp, £, , 1, ... =0, =1 such that

(tp8p(Ba) + - + tsgs(by ) = §

fors=p, p +1, .... Consider the functional f, = 37_, #,g,0n M. 1tis clear that f,(K)
CZ Wehave lif,ll s 37_,llg,ll s277*3.If s 2 p, then

(Fpba D =15 = p tr8rBa | = KZFp 1,8x M = 5,
which implies that
K90 = an M| = [{fobn) = fpbn)) + Fy(@ny) = Fpp(0))

1 1 1 1

2 [ pa ) = U1 - Wby = dag ) = NI - @) 2 § - 5 - 55 = -

So, we may take f=f¢. Q

Let p be a seminorm on a vector space E. We write B,={u €E: p(u) <1}. The
quotient space E/p~1(0) endowed with its canonical norm is denoted by E,, and
the canonical projection of E onto E, by y,. We shall identify E, with the corre-
sponding subspace of the completion E,. We say that p is a pre-Hilbert seminorm
if E, is a Hilbert space. If g = p is angther~semirlorm on E, the canonical operator
from E, to E is denoted by Tjg. By Tp,: E,— E, we denote the canonical exten-
sion of T},

Proof of the Theorem: Let G be a nuclear group. Due to Theorem (9.6) of [1],
there exist a nuclear vector group F, a subgroup P of F and a closed subgroup K
of P such that G is topologically isomorphic to P/K. Naturally, we may identify
P/K with a subgroup of F/K. As the property of respecting compactness is evi-
dently inherited by arbitrary subgroups, we may simply assume that G =F/K. Let
B: F — G be the canonical projection.

Let X be a weakly compact subset of G. First we shall prove that X is totally
bounded. Suppose the contrary. Then we can find some V& Ny(G) and some se-
quence (g,)5-1 in X such that g,, — g, &V whenever m = n. To obtain a contradic-
tion, we shall construct a subsequence of (g,) without weak cluster points in G.

Choose U € N¢(F) such that B(U) C V. By (9.3) and (2.14) of [1], we can find
a linear subspace E of F and pre-Hilbert seminorms p =z q=r on £ such that B,CU,
B, € N (F), 3% - 1kdk(qu) =<1 and dk(Tq,) — 0 as k — o. We have the canonical
commutative diagram

E S, E s E
|# [ |-
E, 2, g, 2, g,
lid lid lid
PSS
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Set H = E NK and consider the canonical commutative diagram

E —9 ., F

L %

E/H —*— F/K

Since BPE.’NO(F), the subspace E spanned over B, is an open subgroup of F, and
A= B(E) is an open subgroup of G =F/K. Observe that i is a topological embed-
ding. The canonical projection y: G — G/A is continuous if both G and G/A are en-
dowed with their weak topologies, hence y(X) is a weakly compact subset of G/A.
As GJ/A is discrete, Glicksberg’s theorem implies that y(X) is compact, hence fi-
nite. Therefore, we can choose a subsequence (g,)5 -1 of (g,) such that y(g,) is
constant. Consequently, we can find a sequence (u,)5 1 in E such that g,/ = B(x,)
+ g for all n.
According to our definitions, we have

d(Tqupq(‘pp(um) = 1pp("n))’ Tqupq(‘pp(K))) z1

whenever m = n. Then it easily follows from Lemma 3 that we can choose a sub-
sequence (u,,s);:l of (u,) such that the sequence (a(u,,s));ll does not have any
weak cluster points in E/H. In other words, the sequence (ﬁ(uns));”=1 does not
have weak cluster points in A = B(E) = W(E/H). Being an open subgroup, A is a
weakly closed subset of G. Thus, (B(uns) +g1))e 1 is a subsequence of (g,) without
weak cluster points in G.

Let us identify G with a subgroup of the completion G. Let X be the closure of
X in &. As X is weakly compact, it is weakly closed in G, which means that X =
X. Then X is compact, being a closed and totally bounded subset of the complete
group G. QO

REMARK 1: A nuclear vector group is not necessarily a topological vector
space (cf. [1, p.86]). If F above were indeed a topological vector space, then E =
F and the proof would be simpler.

REMARK 2: Following [7], let us denote by & and }9 the classes of Abelian
topological groups which respect compactness and satisfy Pontryagin duality, re-
spectively. Let A be an open subgroup of an Abelian topological group G. It was
observed in [7, Proposition 2.7], that if G belongs to & (respectively, to 10), then
so does A. The converse is also true: an easy argument shows that AER =G €
%, while A €)9 = G €19 was proved in [5, (2.3)].

REMARK 3: It was asked in [7] if every group in }9 N4 can be embedded into
a product of LCA groups. The answer is negative; this result had been announced
in [8]. Here we give another argument. Corollary 1.5 of [7] says that all Montel
spaces belong to 30 N &. On the other hand, it easily follows from the structure
theorem for LCA groups that if a topological vector space E can be embedded into
a product of LCA groups, then it can be embedded into a product of real lines.
So, if E is infinite-dimensional, then every neighborhood of 0 in E contains an
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infinite dimensional linear subspace. Therefore, for instance, the classical Montel
spaces D, E, H, S (see, e.g, [10, Section 8, Chapter III]) cannot be embedded
into products of LCA groups.

10.
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ABSTRACT: The class of almost stably locally compact topological spaces is defined and
a bitopological characterization obtained. Bounds for the biweight and cardinality of bitopo-
logical spaces involved in this characterizatjon are established and applied to give bounds for
the weight and cardinality of almost stably locally compact spaces.

1. A BITOPOLOGICAL CHARACTERIZATION

Our aim in this paper is to use a bitopological characterization of a class of
stably compactlike spaces to obtain inequalities for the weight and cardinality of
spaces in this class. Our characterization is essentially similar to that given in [3]
for the class of stably compact spaces itself (called stably locally compact in [31
[8] and in the preprint version of [17]). For the benefit of the reader who may not
have access to [3] we shall repeat all relevant definitions and results, outlining
the proofs where appropriate.

Recall that a sober topological space (X, ) is called stably compact if it is

(a) compact,

(b) locally compact and

(c) the intersection of any two compact saturated subsets is compact.

Here compact does not imply any separation axiom, and locally compact
means that every point has a base of compact neighborhoods. A set is saturated
if it is an upper set for the specialization order x sy <>x" Cy", where forA CX,
A% denotes the closure of A for the topology u. If we remove the assumption of
compactness we have the definition of stable local compactness in the sense of

[17].
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By weakening the sobriety condition slightly we arrive at the class of spaces
we wish to study. Recall that (X, u) is sober if every irreducible closed set is the
closure of a unique singleton. A sober space is therefore necessarily Tj. We may
now give:

DEFINITION 1.1:  The Tyspace (X, u) is almost sober if every irreducible prop-
er closed subset of X is the closure of a unique singleton. An almost sober space
satisfying conditions (b) and (c) above is called an almost stably locally compact
space.

If 5 (respectively, ) denotes the lower (upper) topology on R then (R, s) and
(R, t) are important examples of almost stably locally compact spaces which are
not stably locally compact.

We shall find the following result useful in the sequel.

LEMMA 1.1: Let (X, u) be almost stably locally compact and let C = {FNK:
F CXis u-closed and K C X is u-compact and u-saturated }. Then any nonempty
subset D of C with the finite intersection property has a nonempty intersection.

In case (X, u) is sober we may replace F C X in the definition of Cby FC X
(compare [3]).

Proof: By Zorn’s Lemma there exists a filter #{ containing D which is maxi-
mal with respect to the property of having a base contained in C. Define

M=H"HeH}.

Since H has a base of u-compact sets it is trivial to verify that every set in
I meets M. In particular M is a nonempty u-closed set. Let us show that it is
irreducible. Suppose on the contrary that M = A U B, where A, B are u-closed
subsets of X with @ =A CM and @ =B CM. Choose a EA\B and b € B\A. Then
since (X, ) is locally compact we may choose u-open sets R, S and u-compact u-
saturated sets P, Q witha €RC PC X\Band b €S C Q C X\A. Sincea EM
we have P NH = & for all H € H, whence P € 3 by the maximality of .
Likewise Q € H . However, PNQ NM = J, which is not possible since P N Q
€ H, and we have established that M is irreducible.

Since (X, u) is almost sober and we clearly have M CX there is a (unique) x EM
with M = x* Take FNK €D. Clearly, x EF since F €3{ and F is u-closed.
On the other hand K € H whence MNK = x* NK =@ and x EK since K is u-
saturated. Thus x € (1D = @.

The restriction F C X in the definition of C is only needed to ensure that M C
X, so this may be omitted if (X, &) is sober. Q

Before stating our characterization theorem we give some background material
which may be of particular interest to those not well aquainted with the theory of
bitopological spaces. We begin by recalling a method of defining a new topology
on X presented in [3].

DEFINITION 1.2: Let S be a family of subsets of X containing X and & and
closed under finite intersections. Define

u(S) = {VEX:x EV=>3S €S, x*C SCS*“C V}.
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Clearly u(S) is a topology on X. We shall say that S:

(a) has the base property if S’ = {X\S:S§ €5} contains a base of u-nhds of
x for eachx €X;

(b) has the (weak) interpolation property for u if for every nonempty u-
closed set F (every F = x% x €X)and § ES with FC Swehave T €
SwithFC TCT“C S;

(c) is stable with respect to u if whenever a u-closed proper subset of X is
covered by a family of sets in S it is covered by a finite subfamily of
these sets;

(d) is wsk foruifx €S €S =>x“CS.

Let us relate these properties of S with properties of the bitopological space
(X, u, u(S)). We shall adopt Kopperman’s terminology in [11] for bitopological
seperation properties. In particular (X, u,v) is:

(i) weakly symmetric (ws) if x €y =y &x";
(ii) pseudo-Hausdorff (pH) if x ¢y*=3JUEu, VEvwithx €U,y EV
andUNV = &
(iii) regular if given x EU €u we have G Eu withx €G CGYC U;
(iv) completely regular if whenever x €U E€u there is a pairwise contin-
uous function f mapping (X,u,v) into the bitopological unit interval
with f(x) = 1and f(y) = Oforally &U;
(v) normal if whenever U €u, K is v-closed and K C Uwehave G Eu
with KCGCGYCU.
Also Ty means that x €y* Ny’ andy €x* Nx"implies x = y; Ty is Tq plus ws;
Hausdorff or T, is Ty plus pH; T3 is T plus regular and T4 is Tq plus normal. If Q
is any of these properties, Ox is the same property with the roles of u and v in-
terchanged, while pairwise Q means both Q and Q. Thus regular, completely
regular, normal and their pairwise forms are essentially as defined in [9], pair-
wise ws is the pairwise Rg of [13], pairwise pH is pairwise Ry in the sense of [14]
(called preseparated in [2]) T (= pairwise Tg) is the weakly pairwise Ty of [16]
and pairwise Ty, pairwise T, have been named semipairwise T7, semipairwise T,
respectively, by the first author [3].
Let us first note:

LEMMA 1.2: If S has the base property then (X, u, u(S)) is pairwise pH. If in
addition (X, u) is Tg then (X, u, u(S)) is pairwise T5.

Proof: It is clear from the definition that (X, u, u(S)) is wsk for any S. We
show that when S has the base property (X, u, u(S)) is pH, whence pairwise pH
follows from [11, Lemma 2.5(b)]. Take x & y", so we havex €U €u, x g U.
By the base property we have Sg € Sand G Eu withx EGC X\SqC U. Defining

V={222C SC X\G forsome S €5}

we obtainy €V Eu(S), while G NV = &. If (X, u) is T then (X, u, u(8))is Ty
and hence pairwise T, by the above and [11, Lemma 2.5(c)]. Q

To obtain stronger separation properties we shall make the assumption that S
is wsx for u. Note that if #(S) denotes the topology with S as a base of open sets
then it is precisely under this condition that (X, u, #(5)) is wsk. We now have:
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LEMMA 1.3: Suppose that S is wsk for u. Then we have the following.

(a) If S has the weak interpolation property we have u(S) = #(S), and
(X, u, u(S)) is regularx. Additional imposition of the base property gives
pairwise regularity.

(b) If S has the interpolation property then (X, u, u(S)) is completely regu-
lark. Additional imposition of the base property gives pairwise complete
regularity.

(c) If S is stable for u and has the weak interpolation property then
(X, u, u(S)) is pairwise normal.

Proof: (a) That u(S) = #(S) under the weak interpolation property is evident
from the definitions. If x €V Eu(S) then x* CS CS*C V forsome S € S. Hence,
x €ESC S*C Vand S €4S) = u(S) so (X, u, u(S)) is regulark. Suppose now
that S also has the base property and take x €U € u. Then we have G € u and
S €Swithx EGC X\SC U. But X\S is #(S) = u(S)-closed, so x €G CG*OS)
C U, i.e., (X, u, u(S)) is also regular.

(b) Let P = {(F,S): Fisu-closed, S €S and F C S }. By the interpolation
property for S it is easy to see that P is a Urysohn set [11, Definition 2.6], while
Tp = u(S). Thus (X, u(S), u) is completely regular, i.e. (X, u, u(S)) is complete-
ly regularsk, by [11, Lemma 2.7(e)]. In the presence of the base property we also
have T pk = u, so by the same lemma (X, u, u(S)) is pairwise completely regular.

(c) Straightforward. 0O

In the sequel we shall consider the case where S is the set of complements of
saturated compact subsets of X. In this case u(S) is the cocompact topology of u
[6], [12], or what Kopperman [11] calls the de Groot dual. We have:

LEMMA 1.4: Let S = {X\K: K is u-compact and u-saturated}. Then:

(a) S is wsxk for u;

(b) if (X, u) is locally compact, S has the base and interpolation properties;
(c) if (X, u) is almost stably locally compact, S is stable.

Proof: (a) and (b) are straightforward. To prove (c) let F be a u-closed proper
subset of X and let K, @ €A, be compact saturated sets with F C U{ X\K,:a€
A} IfF QU{X\Ka: o €A’} for all finite subsets A’ of A then the family F N K,
o E A, has the finite intersection property, and we obtain a contradiction from
Lemma 1.1. QO

We now turn to the question of bitopological compactness. Kopperman calls a
bitopological space (X, u,v) stable if every v-closed proper subset of X is u-com-
pact. Hence, pairwise stability is the pairwise compactness property introduced
in [15], and is characterized by the condition that every pairwise open cover of
X, i.e., every cover of X by sets in # U v which contains at least one nonempty u-
open and at least one nonempty v-open set, has a finite subcover. On the other
hand (X, u,v) is called compact in [11] if (X, u) is compact. Hence, Kopperman’s
pairwise compactness together with pairwise stability gives joint compactness,
i.e., compactness with respect to the joint topology u V v (called the specializa-
tion topology T in [11]). The space (R, s, t) is an example of a pairwise stable
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space which is not jointly compact. Kopperman also uses the term joincompact
for a pairwise T, jointly compact space.
We may now give the promised characterization:

THEOREM 1.1:

(1) Let (X,u,v) be a pairwise T, pairwise stable space. Then (X, u) is an
almost stably locally compact space.

(2) Let (X, u) be an almost stably locally compact space. Then there exists a
topology v on X so that (X,u,v) is pairwise T and pairwise stable. More-
over v is unique, being equal to the cocompact topology of u.

Stably locally compact spaces are characterized by the additional requirement
that (X,u,v) be compact, while a characterization of stably compact spaces is
obtained by replacing pairwise stability by joint compactness (see [3]).

Proof: (1) Clearly (X, u) is T so to prove almost sobriety we need only show
that for an u-irreducible u-closed set M CX we have x EM with M = x". Suppose
this is not so, then for each x EM Ix’ € M\x*. Since (X,u,v) is pairwise pH we
have x EV, Ev, x' €U, Euwith U, NV, = &, whence M C fJ{Vx:x EM'}
for some finite subset M’ of M. Since V, C X\U, for each x we may choose a finite
subset M’ = {xq, ..., X,} of M with the smallest possible cardinality for which
MC U{X\Ux , ..» X\U, }. Clearly n =2, and it is easy to verify that My = M\le,
My = Ul ,(M\U. ) are"closed sets with @ = My CM, k = 1,2, M = M; UM,
which contradicts the irreducibility of M.

Note that if (X, v) is compact then the above argument also applies if M = X
is u-irreducible, so (X, u) is sober in this case.

Under the given conditions (X, u,v) is pairwise regular. If x € UEuhasUC
X then U contains a v-closed and hence u-compact nhd of x. On the other hand if
X is the only u-open set containing x then X is a u-compact nhd of x in X. Thus
(X, u) is locally compact.

It remains to verify condition (c) of Definition 1.1. For A C X define PA) =
{x:x €Y' for some y €A}. Then, since (X, u,v) is pairwise pH, we have

(A) A is u-saturated iff P,(A) = A,

(B) A is u-compact iff P,(A) = A".

It follows that every saturated u-compact set is v-closed, whence (c) merely
expresses the fact that the intersection of two v-closed proper subsets is a v-
closed proper subset, and hence u-compact.

(2) We first establish the uniqueness of v by showing that if (X, u,v) is pair-
wise T, and pairwise stable then v = u(S), where S = {X\K: K is u-saturated and
u-compact}. Take x €V €v. Then we have V; Ev with x €V, CVH4C V. If we
set K = X\V; then K CX is v-closed and hence u-compact, while by (A) and (B)
above it is also u-saturated. Hence V € u(S) so v C u(S). The reverse inclusion
u(S) C v is trivial, and we have shown that v = u(S).

Now let (X, ) be almost stably locally compact and consider v = u(S) for the
family S defined above. By Lemmas 1.2 and 1.3, (X,u,v) is pairwise T, and in-
deed pairwise completely regular and pairwise normal.

To establish pairwise stablity take F C X closed in (X,u), and suppose that
{Vq:a €A} is a v-open cover of F which has no finite subcover. For a €A and
x €V, choose a u-compact u-saturated set Kq(x) with
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¥ C X\Ko(x) C K, (0 C Vg

Then clearly
D = {F NKyx):a €EA, x EV,}

is a subfamily of C with the finite intersection property, so by Lemma 1.1 we
have some z € {1D. Since z EF we have p EA with z € Vg, whence z € Kg(2),
which is clearly impossible. Thus F is v-compact. If (X, u) is sober then the same
argument shows that X is also v-compact in this case.

A similar argument may be used to show that every v-closed proper subset of
X is u-compact, and the proof is complete. O

Note that almost stably local compactness and stable compactness exhibit a ba-
sic symmetry which is not shared by stable local compactness.

In the next two sections we will obtain inequalities for the biweight and cardi-
nality of pairwise T, pairwise stable bitopological spaces and use the above char-
acterization to deduce corresponding results for the class of almost stably locally
compact topological spaces. Cardinal functions in bitopological spaces were first
considered by Kopperman and Meyer [10] and by the second author [4], [5].

2. SOME RESULTS ON THE BIWEIGHT AND WEIGHT

Throughout (X, u,v) will be a bitopological space. B = B, x B,, is a bibase if
B,(B,) is a base for the u-open (v-open) sets. bw(X) =min{ | B|: B is a bibase} is
the biweight [4], [10] of (X, u,v). Clearly,

jw(X) = bw(X) = max{w,(X), w,(X)},

where jw(X) is the weight of (X,u Vv v). If (X, u,v) is jointly compact and pairwise
T, then (X,u V v) is a compact Hausdorff space so jw(X) s |X|. We wish to
strengthen this result, and will find it convenient to make the following defini-
tions:

DEFINITION 2.1:  (a) Let (X, u,v) be pairwise pH, so that for all x €X we have
¥ =V x €evev},x’ = ({U":x EU Eu}.Then P = P, xP,Cuxv
is a regular pseudobase if x* = N{g“:x €Q EP,},x" = ({P':x eEPEP,}
for all x €X, and the regular pseudoweight ripw(X) of X is given by

pw(X) = min{|P|: P is a regular pseudobase}.

(b) Let (X,u,v) be a bitopological space, N, a network for (X, u) and N, a
network for (X,v). Then N = N, x N, is a binetwork for (X,u,v) and

bnw(X) = min {|N|: NN is a binetwork}

is the binetwork weight of (X,u,v).

Note that, since we shall only be interested in the case where the cardinal func-
tions we consider are infinite, we may assume without loss of generality that in
(a) the sets P, and P, cover X, for in the contrary case we need only add the set
X to them. We now have:
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THEOREM 2.1: Let (X, u,v) be pairwise stable and pairwise T,. Then
bw(X) = rpw(X) = bnw(X) = |X].

Proof: To establish bw(X) s rpw(X) let P be a regular pseudobase with |P| =
rpw(X) and define

B ={(n'~’=1P,~, ﬂ?=1Q,~):(P,~, Q,) E?, i = 1, 2, coey n;n<(,o}.

Certainly |B| =|P|. We claim that B is a bibase for (X,u,v). Take G €u, H Ev,
x €EG NH. Suppose G = X. Since x"C G, fory &G we have P,E P, withx EP,,
y ¢P,’. Hence, {G} U {X\P,”: y EX\G } is a pairwise open cover of X, whence
for some y1, «.., yys EX\G we have G UUT_1(X\P}) = X, i.c., Py N .. nF;mg
G.In case G = X this may be satisfied with m = 1 and arbitrary P, €7, con-
taining_x. Likewise we have Qmer y vees QYn € P, containing x for which Q’}‘,m+ N
.. NQ¥C H. Taking (P;, 0) (o be (P, 0, ) for 1 si<m, and to be (P, , g,)
form+1 si=nwehave (P;, Q) €EP, x i}’v =P,xel_PCGandx €
ﬂ;; 10; CH, so establishing our claim. Hence bw(X) s rpw(X) as required.

To verify rpw(X) = bnw(X), let N be a binetwork with | N = bnw(X), and let
N* = {(M, N): M,N)EN,I(U,V) Eux vwith MC U, NC VandU NV
— @}. For each (M, N) EN* choose U = Uy Eu, V = Vorwy Ev with M CU,
NC Vand UNV = @ and define

P, = {Upny MN) EN*Y, Py = { Varwy: M N) EN*}.

Clearly P = P, x P, satisfies |P| s |N|, so it remains to verify that it is a
regular pseudobase. However, for y gx“wehave U €Eu,V Evwithy EU,x €
Vand UNV = &. Thus, if we choose M €N, N EN,withy EMC Uandx
€N C V we have (M, N) € N*, and then x € Vouny ¥ ¢ Uqu,ny- The case y &
%" is dealt with in the same way, so P is a regular pseudobase and we have estab-
lished rpw(X) = bnw(X).

The equality of the three cardinal functions now follows from the trivial ine-
quality bnw(X) = bw(X), while bnw(X) =|X| is immediate from the definition. This
completes the proof of the theorem. QO

The following example shows that the pairwise T, condition in Theorem 2.1
cannot be replaced by the condition that each topology be Tj.

EXAMPLE 2.1: Let X = N x N, take u to be the topology consisting of & and
all subsets G of X for which the set {i : (i, j) € G } is finite for all j EN, and v
to be the cofinite topology on X.

Clearly (X, u) is not 2nd countable and so bw(X) > |X|. On the other hand
(X,u,v) is clearly pairwise stable and each topology is Ty.

The following result is an immediate corollary to Theorems 1.1 and 2.1:

THEOREM 2.2: Let (X, u) be an almost stably locally compact space. Then
w(X) = |X].

It will be interesting to compare the weight w,(X) of (X,u) with the weight
w,(X) of (X,v) under the conditions of Theorem 2.1. That they are in fact equal
will emerge as a corollary to the following more general results.
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THEOREM 2.3: Let (X, u) be a topological space and define v by v = u(S) as
in Definition 1.2. Let

S; = min{|S'|: $C S, xCTCTC SforS,T ES=>
35 €5,xC §CSC S},
S, = min{|$"|: S’C S, FCTCTC SforS,T €S, F closed =
31 €S, FC §SCSC S},
S; =min{|B|: BC u, X\SC G,S €S, G Eu=
3B €B,X\SC BC G}.
Then:

(1) if S has the weak interpolation property then w,(X) s S1(X) = S5(X);
(2) if S has the interpolation property then S,(X) s S3(X);

(3) if X\S is compact for each § € S then S3(X) = w,(X);

(4) if S has the base and interpolation property then x,(X) s Sy(X).

Proof: Straightforward. Q

COROLLARY 1: Under the conditions of Theorem 2.1 we have w,(X) = w,(X).

Proof: w,(X) s w,(X) follows from Theorems 2.1 and 1.1 by noting that v =
u(S) where S = {X\K: K compact and saturated} has the base and interpolation
properties. However, by symmetry, we also have w,(X) =w,(X). Q

For the above choice of S we obtain:

COROLLARY 2: Let X be an almost stably locally compact space and S the set
of complements of compact saturated subsets of X. Then

XKXH) = S1() = Sy = Sy = W) s| X |.
In general it is not the case that under the conditions of Theorem 2.1 we have

equality for the character, as the following examples show.

EXAMPLE 2.2: Let (X, u) be a discrete, infinite topological space and v the
cofinite topology. Then (X, u, v) is pairwise stable and pairwise Ty, w,(X) =w,(X)
= |X] but x,(X) = x,(X)-

EXAMPLE 2.3: DefineX = RU {x*,y*}, where x*,y* are not in R, let u have
the base

{{x}:x €1} U{@QW) U {*}:| Al <o, AC Q}U{IUH*},
and v have the base
{{x}:x EQYU{(N\B)U{H*}:|Bl <, BC 1} U{QU {x*}},

where Q is the set of rational and [l the set of irrational numbers. Then it is easy
to verify that (X,u,v) is pairwise T, and jointly compact. Clearly w,(X) = w,(X)
= 29but @ = x,(X) < x(X) = 2%
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3. BOUNDS ON THE CARDINALITY

If (X, u,v) is jointly compact and pairwise T, then (X, u V v) is a compact Haus-
dorff space and |X| s exp(jx(X)) = exp(jp(X)) by the famous theorem of Arhan-
gel’skil [1]. This is clearly false if we replace joint compactness by pairwise
stability as Example 2.2 shows. However, as we now show, it is possible to find
an estimate for the cardinality of an even wider class of spaces, namely the pair-
wise T pairwise stable spaces.

Let (X,u,v) be a pairwise ws space. We say that B(x) = B,(x) x B,(x), where
B,(x) C u and B,(x) C v, is a pseudobibase at x if ¥ ={v:VeBm®} x'
= [{U: U €B,x)} and define

by(x, X) = min{|B(x)|: B(x) is a pseudobibase at x }

and

by(X) = sup{by(x, X): x EX}.
For a not necessarily T; topological space (X, u) a pseudobase C(x) at x may be
defined by the conditions C(x) Cu, NC(x) = (x) where (x) = N{U:x €U €u}.
The pseudocharacter ,(x, X) at x is then the minimum cardinal of such a pseudo-

base at x, while the pseudocharacter y,(X) of (X, ) is the supremum of ¢, (X, x)
over x € X. We then have:

WD s by = max{yp,X), YA}

Clearly by(X) = by(X), where the bicharacter is defined in the obvious way, and
we have equality for pairwise stable pairwise pH spaces. We may now state the
promised theorem:

THEOREM 3.1: Let (X,u,v) be pairwise stable and pairwise T;. Then
| X] < exp(bw(X)).

Our proof will follow the same pattern as A. A Gryzlov’s proof of the inequal-
ity |X] =exp(y(X)) for compact Ty topological spaces [7]. First we shall need a
notion of initial pairwise stability for bitopological spaces. Throughout the fol-
lowing, t is an infinite cardinal.

DEFINITION 3.1: (X, u,v) is initially pairwise stable up to T if every pairwise
open cover b of X with |b| =t has a finite subcover.

Recall {2] that a bifilter subbase B is a product of filter subases, and that B is
called I-regular if PBQ =P NQ = . A point x is a cluster point of Bifx €P"
NOY VY PBQ. If now we call B essential if 3 PBQ with P'CXand 0% CX we
may give the following characterization.

LEMMA 3.1:  (X,u,v) is initially pairwise stable up to Tiff every I-regular es-
sential bifilter subbase B in X with |B| =< has a cluster point in X.

Proof: Straightforward. Q0

Clearly a similar characterization of pairwise stability may be given by omit-
ting the cardinality restriction.
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For the proof of Gryzlov’s theorem the notion of initial compactness up to T is
sufficient, but it transpires that for the bitopological case the corresponding no-
tion of initial pairwise stability up to < is not sufficiently powerful, and we intro-
duce the following concept.

DEFINITION 3.2: Y C X has the pe(t)-property if for all infinite subsets B of
Y with |B| =t we have:

(a) B¥ CX = B has a v-total accumulation point (v-t.a.p.) in B*NY

(b) BY C X => B has a u-total accumulation point (#-t.a.p.} in BY NY.
Here we recall that x is a total (or, complete) accumulation point of a subset A of
a topological space if for each open nhd. G of x we have |U NG| = |G|.

The next result shows that this property involves elements of both topological
initial compactness and bitopological initial pairwise stability.

LEMMA 3.2: Suppose Y C X has the pc(t)-property. Then we have the follow-
ing. _ _
(1) Let A CY. If A is u-closed (v-closed) in Y and A* CX (A" CX) then A is
initially v-compact (u-compact) up to T.
(2) Y is initially pairwise stable up to .

Proof: (1) Let A be an u-closed subset of Y and suppose A¥ C X. Let V be a
family of v-open subsets of X with A € UV and | V| =t. Suppose that V has no
finite subcover of A, and that 'V has the smallest possible cardinal. Equip 'V with
a minimal well order < . For each V € V we may choose x(V) EA with x(V) €
X\U{{x(V)} UV': V' < Vand V' » V}. The set B = {x(V): VEV } is infinite
and |B| st. Now BC AandA“CX =B“CXsoBhasav-tap.x €EBY NYC
A" NY = Asince A is u-closed in Y. Take V, €V with x €V,. Then x(V) €B
NV, =V<V,and V=V,s0|B NV,|<|V]| = |B|which contradicts the fact that
x is a v-t.a.p. of B.

(2) Let G be a pairwise open (in X) cover of Y with |G| st. Let G = Ug u:
Ueg nuy,H=U{ V:VveEgnv}

(i) Suppose Y C H. Choose Uy € G Nu with Uy = D and let A = Y N
(X\Uyp). Then A is u-closed in Y and A* C X\Uy C X so by (1) we can
find Vy, ..., V,EGNv withACV,U.. UV, whence {Uy, Vy, ...,
V,} is a finite subcover of Y.

(ii) Suppose Y € G. A similar proof holds.

(iii) Suppose Y TH and Y ZG. Let A = Y N (X\G). As above we have Vj,
uV,EGNYWiIthAC V; U ... UV, NowletA’ = YN xX\(UL_,v)
and we can choose Uy, ..., U, €EG Nu with A’C U; U...UU,.
Then {Uy, ..., Uy, Vy, ...,V,)} is a finite subcoverof Y. QO

LEMMA 3.3: Let (X,u,v) be pairwise stable and pairwise Ty. Then if @ =Y C
X has the pc(t)-property for t = by(X) we have:
(1) Y is pairwise stable.
(2) If Y satisfiesx @Y =Y C x*CXor YC x” CX then:
(i) Ix &Y, YC x*=Y is v-compact;
(ii)Ax &Y, Y C x¥=Y is u-compact.

Proof: (1) Let B(x) be a pseudo dual base at x with |B(x)| <t. Let B be a max-
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imal I-regular closed essential bifilter in Y. Then B = {(P*, 0*): PBQ } is an I-
regular closed essential bifilter base on X, whence Iel{P'NQ*: PBQ} since
(X,u,v) is pairwise stable. We show that if x €EG Eu, x € H € v then there exists
PBQ with PN Q CG N H. Suppose not. Then for some G, H we have PN QLG
NH,ie,PNQNEX\G) =B or PNX\H)NQ = for all P B Q. There are two
cases to consider:

(a) Suppose PNQ N (X\G) » @ for all PBQ. Then

{(P, 2N (X\G)): PBQ}

is a base for an L-regular closed essential bifilter B' on Y. (P, ¢ N(X\G)) & B
since otherwise x € @ N iXiGi“ would give the contradiction G N Q N (X\G) =
&. On the other hand B C B’ since P C P and Q N(X\G) C Q for all PBQ. This
contradicts the maximality of B.

(b) Suppose 3PyBQg with Py N Qo N (X\G) = . Define

C = {PNX\H), Q): PBQ,PNQ N(X\G) = B}

Then C =@ and if (P;N(X\H), Q) EC,i=1,2then ,NQ; N X\G)=@=PN
P,NQ NG, NX\G) = &= (P, NP,NX\H), 01 NQ)EC. AlsoPNQON
X\G) = B=PN (X\H) N Q = @ so C is a base for an 1-regular closed essential
bifilter B on Y. Now PBQ = (P N Py N (X\H), 0 NQg) €C and P N PyN (X\H)
C P,QNQgCQ, soBLCB. On the other hand (Po N (X\H), Qg ¢ C since
x€ PyN (X\H) andx€H Ev would give the contradiction HNPyN (X\H) = &.
This again contradicts the maximality of B.

For each (G, H) € B(x) we may therefore choose P(G, HYBQ(G, H) with
P(G, H) N Q(G, H) CG N H. Without loss of generality we may assume P(G, H)
CY and Q(G, H) CY since B is essential. Thus

B* = {(P(G, H), Q(G, H)): (G, H) € B(x)}

is an I-regular closed essential bifilter subbase on Y, and |B*| =t. By Lemma
3.2(1), Y is initially pairwise stable up to T and so by Lemma 3.1, B(x) has a clus-
ter point in Y. Thus y € ({ P(G, H) N Q(G, H): (G, H) € B(x)} € NG NH:
(G, H) €B(x)} = x* Nx* = {x}, since (X,u,v) is pairwise T;. Hence, y =x so y
EYNP’'NQ* = PNQ forall (P, Q) € B. Thus Y is pairwise stable.

(2)(i) Suppose Y CXxy* for some xy €X. By hypothesis ¥o" CX, so we have Y*
CX. Let K be a maximal filter of v-closed subsets of ¥ and assume that NK =

. Let
X = {E"NY“: KeX}.

Then Y * is v-compact since (X, u,v) is pairwise stable and Y* CX,s03x € K"
NY%: K €XK}. Clearly x €Y otherwise x € {K"NY:K €X} = NK which
contradicts K = . There are two cases to consider:

Case1: YCx". ThenforallKEX,Y = x*NYC K'NY = KC Ysince K
is v-closed in Y. Thus KX = {Y} has NX = &, which is a contradiction.

Case 2: Y CXx“ We may choose a system B,(x) of u-neighborhoods of x with
|B,(x)| =T and NB,(x) = x*. Now for each U € B,(x) we have Ky € X with Ky
C U. For suppose not, then for some U we have K QU for all KeX, ie., (X\U)
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NK =@ so (X\U) NK" = @ for all K € K. Now X\U C X is u-closed and hence v-
compact and { (X\U) NK”: K € K } is a filter base of v-closed subsets so Iz €
&\) N Ng e xK". Again if z EY we have a contradiction so suppose z & Y.
There are again two cases:

() YC2z". ThenY C zV CK¥=Y=K" NY =K, which gives the contradic-

tion X = {Y}.

(B) Y C2*. Then x €EY* C 2% But x € U € B(x) and x & U, which again is a

contradiction.

This establishes the existence of K; and the family X* = {Ky : U € B,(x)}
clearly has | K*| =t, whence 3y € rﬁ]{KU: U € B,(x) } by Lemma 3.2(1) with
A=Y.Thusy €[)B,(x) = x". However, y €Y C x* which gives the contradiction
x =y €Y as before.

This proves NK =@, whence Y is v-compact.

(2)(ii) Suppose Y Cx’ for some xy € X. A similar argument establishes that Y
is u-compact. O

LEMMA 3.4: Let (X,u,v) be pairwise stable and take Y C X. If Y*CX then Y
has a v-t.a.p. in Y* and if Y CX then Y has a u-t.a.p. in Y.

Proof: Straightforward. (0O

LEMMA 3.5:  Let (X, u,v) be pairwise stable, A CX have |A|<2". Then we have
F C X with the pc(t)-property satisfying A CF and |F| = 2"

Proof: Construct a family {Ay: o s w +} of subsets of X having {A,| <2% by

(1) Ag=A

(2) Suppose a=p+1 and let Wp={B: BC Ap, |B|st}, Wg*={B: BE W,
B“CX}and Wg" = {B: BE Wy, B” CX}. By Lemma 3.4 each B € wg*
has a v-t.a.p. xg" in B” and each B € Wp" has a u-t.a.p. xp”" in B”. Let

Aq =AgU {xg": B EWg"} U {xg": BEWp"}.
(3) Suppose a is a limit ordinal. In this case let
Ag=U{Ag:p<al.
Clearly |A, | = 2" for each o < w+ Hence
F = U{Aa: o< g+}

has |F| = 2%, and clearly A C F. It is easy to verify that F has the pc(t)-
property. QO

Proof of Theorem 3.1: Lett = by(X) =max(y,(X), y,(X)), and for each x €

X let B,(x), By(x) be families of u,v-neighborhoods of x with |B,(x)| =T and
|B,(x)| <t. Let y be a choice function on the nonempty subsets of X. We construct
a sequence {F,: a < w.+} of subsets of X with the pc(t)-property and satisfying
|Fo| =27 as follows.

(1) Let Fybe any subset of X of cardinality not exceeding 2* which includes
any point x with x¥ = X (necessarily unique since (X, u) is Tp), and any
point x with x¥ = X (necessarily unique since (X, v) is Tg).

(2) Leta = B+ 1. Consider Wg = U{B,(x) UB,(x): x EFg} and let
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Fo = Fp U{y\UX): X C W finite, Ux cxy.

Clearly |F,/| =27 Let F, be a set with the pc(t) property containing Fg'
and satisfying |F,| =27 constructed as in Lemma 3.5 forA =F,".
(3) Let o be a limit ordinal. In this case let

Fo = Ug.oFp

and choose F, as in (2).

Now consider the set D = U{ Fy: o < .+ }. Then |D| = 2" and clearly D has
the pe(t)-property. Now suppose that D CX. There are two cases to consider.

(i) For all x € D we have D Cx" or D Cx". Suppose that D C x" for some

x @D. In view of the definition of Fy C D we may apply Lemma 3.3(2)
and deduce that D is v-compact. Theny ED =y €x“ =y & x" since the
space is pairwise T;. Hence x & y* since (X,u,v) is pairwise ws. But yH =

B,(y) so we have V, € B,(y) with x &V, ThusDCV, U..UV, for
SOME Y1, ..oy Y € D. We have o < og+ With yq, ..., yn € Fo 50 X = {nVy ,
""VYm} C W,. Thus y(X\U.’K) € F, 41 € D, which is a contradiction. }\
similar contradiction is also obtained if D C x" for some x ¢&D.

(ii) 3x ¢D, D Ix* and D x. Take y €D\x" and z €D\x". Then we have
U, EB,p), V, €By2) with x €U, UV, For tED, t #y,z we have
t@x" or t € x” so we have L, € B,(f) U B,(¢) with x & L, Hence
{Uy, Vi Lyi t €D\{y, z}} is a pairwise open cover of D, and D is pairwise
stable by Lemma 3.3(1) so we have ¢y, ..., t, €D for which X ={U,,V,
L‘l’ cers Ltn} is a cover of D. Again X € W, for some a < w; and we have
the contradiction y(X\U K) € Fo,y C D. This shows that D = X so |X| =
ID| £2° = 2°¥® as required. QO

In order to deduce an upper bound for the cardinality of an almost stably lo-
cally compact space we must characterize \,(X). For each x €X the set X\x* may
be expressed as a union of compact saturated sets. Let C(x) be a family of com-
pact saturated sets satisfying

x\x* = UCw)
and denote by scy(x, X) the minimum cardinality of such families. If we let
scp(X) = sup {scy(x, X):x EX}
then we have the following lemma.

LEMMA 3.6: If (X,u,v) is pairwise stable and pairwise T then for all x eX
we have sc(x, X) = ¥,(x, X) so scp(X) = P, (X).

Proof: Immediate from properties (A) and (B) in the proof of Theorem 1.1. O
We now obtain the following corollary to Theorem 3.1:
THEOREM 3.2: Let (X, u) be almost stably locally compact. Then

1X| < exp(pCDsCH(x)).
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ABSTRACT: We show that the image of a o-relatively discrete cover of a space under a per-
fect map has a o-relatively discrete refinement. From this we deduce that spaces with a o-rela-
tively discrete network and, in particular, o-relatively discrete sets, are invariant under perfect
maps. Another corollary is that weakly 6-refinable spaces are preserved by perfect maps, a re-
sult previously shown by the first author.

The purpose of this note is to prove several “perfect image theorems” concern-
ing spaces defined in terms of o-relatively discrete collections. Such spaces arise
naturally in connection with the study of general analytic topological spaces [3].

We first recall some definitions. A collection N of disjoint subsets of a space
X is relatively discrete if each point of UV has a neighborhood that meets only
one member of N (equivalently, there are open sets Uy in X such that N C Uy
and Uy N N'= & for all N’ = N). Recall that a cover N of a space X is a network
for X if, whenever U is an open neighborhood of x, then x € N C U for some
N EN. When we say that N'= U,,Em.’Nn is a o-relatively discrete network for X
we mean that N is a network and N, is relatively discrete for each n € w. Final-
ly, a collection N is a baselike refinement for a collection M if N is a refine-
ment of M and each member of M is a union of sets from N

The proof of our main theorem will make use of the following lemma.

LEMMA: Any locally finite collection has a o-relatively discrete baselike re-
finement.

Proof: Let E ={E,: a € A} be a locally finite collection of subsets of the
space X. Foreach n =1, 2, ... let P, = {B C A: card(B) = n}, and for each B €
P, define

Eg={x€N,cpE,:xEE, <> a€ Byand Up=X - U{E,:a €A -B}.
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Note that Eg C Upg, Ug is open in X, and EgN Up = & for all B’ € P, such that
B’ #B.mThus {Ep: B € P,}is relatively discrete for each n =1, 2, .... It follows
that U,,=1 U{EB: B € P, }is the desired o-relatively discrete baselike refinement
of E.

THEOREM 1: Suppose f: X — Y is a perfect onto map and N is a o-relatively
discrete cover for X. Then Y has a o-relatively discrete cover M which is a re-
finement of {f(N): N € N'}. Moreover, if N is a network for X, then M is a net-
work for Y.

Proof: Let N = U,,Em.’N,, be a cover for X (respectively, a network) such
that, for each n € w, IV, is relatively discrete, and let U, = {Uy: N EN,} be a
collection of open sets in X such that, whenever N = N'in NN, we have N C Uy
and N'N Uy =&.

For each y €Y we consider the set Q(y) of all finite increasing sequences ng <
ny <.+ <ngin o such that

@ 1) CUiUU,,), and

(2) there exists N € N, such that f(y) N MU;aUu,)) = 2.

Put Q = U {Q(y): y €Y. For each nlk = (ng, ... , m) €Q, let

Vo= € Vi nlk€Q()},
Mn|k = {( N\Ui<k(U,uni )) nf_l(YnM:) :N Ewnk}'

It is easy to see that M, is a discrete collection of subsets of U,»sk(U’Un,) and
hence aiso of the subspace X4 =f'1(Y,,|k). '

Since frestricted to X, is a perfect map onto Yp|i 8 standard argument shows
that the image of the discrete collection Mn]k under this map is locally finite rel-
ative to Y, ;. Moreover, by the Lemma, any locally finite collection has a o-rela-
tively discrete base-like refinement. It follows that there is a sequence (L) new Of
relatively discrete collections in Y such that, whenever y € f(M) for some M €
M, and nlk € o**1 then y €L Cf(M) for some L € £,, and m € w. It thus suf-
fices to show that the collection

UrcoUnjke ok 1{fM): M € My}

is a cover (respectively, a network) for Y — since then (L) nee Will be the desired
o-relatively discrete refinement of {f(N): N € N }(respectively, network for ¥).

We now give the proof in the case when NV is a network and point out that for
the other case one need only take V =Y in the following argument and substitute
the word “cover” for “network.” Let V be an open neighborhood of the point
y EY, and let us show there is some M € M, with y € f(M) C V. Since f71(y)
Qf'l(V) and 2V is a network for X, there is a smallest ny € w such that, for some
x €f71(y), there is an N € N, such that x EN C f~Y(V). Note that, if

oyclu

ny’

then ng € Q(y), N Ny, E.’M,,O, and y Ef(N) NY, CV as required. Other-
wise, there is some x €7 1(y)\ ’U,,O and so we can find a smallest ny>ngand N €
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N,y such that x €N Cf~Y(V). Continuing in this way we generate a sequence {;),
where n; exists provided

o) -2,

in which case some N E.’N,,i must intersect this set and satisfy N Cf~1(V), n; be-
ing the smallest index for which such an N exists. We claim this process must ter-
minate at some finite stage. Otherwise the intersection

Nie m(f_l()’) \Uj<i (Uunj))

contains a point x, and for some 7 € w and for some N € N,, we have x EN cftw.
But this contradicts the minimality of the first ;> rn. Hence, for some k£ € w and for
some N € N, we have nlk € Q(y), N Cf~1(V), and

Fioyn(w\Ui(Uu,) = 2.

Consequently, if

M= (N\ Ui<k( U’U,,l. )) nf_l(Ynlk)’

then M EMnlk, M ﬂf‘l(y) =&, and thus y € f(M) CV as required. That concludes
the proof. 0

Since a space X is o-relatively discrete if and only if {{x}: x €X} is a o-rela-
tively discrete network for X, the following is an immediate corollary of the the-
orem.

COROLLARY 1: Letf: X —Y be a perfect onto map. If X is a o-relatively dis-
crete set, then so is Y.

One characterization of a weakly 0-refinable space is that each open cover has
a o-relatively discrete refinement [1], so the following result is also an immediate
corollary of the theorem.

COROLLARY 2: [2]Let f: X — Y be a perfect onto map. If X is weakly O-refin-
able, then sois Y.
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ABSTRACT: We study propetly Mgg-tame and properly ME-movable spaces, where B and
C denote classes of topological spaces. Both proper tameness and proper movability are invari-
ants of a recently invented first author’s proper shape theory and are described by the use of
proper multivalued functions. The first is analogous to L. Siecbenmann’s notion of a tame at in-
finity space while the second is modelled on Borsuk’s concept of movability in shape theory.

1. INTRODUCTION

The notions and results in this paper belong to the part of topology that could
be described as proper shape theory. As shape theory is an improved homotopy
theory designed to handle more successfully complicated spaces so is proper
shape theory a modification of proper homotopy theory made with the same goal
to provide us with a new insight into global properties even of those spaces for
which the classical proper homotopy gives doubtful information.

In [5] the first author has described proper shape category of all topological
spaces using Sanjurjo’s method of multivalued functions from [11]. His approach
was formally very similar to the one taken by Ball and Sher [2]. Instead of proper
fundamental nets he considered proper multinets. The other steps were identical.
He defined a notion of a proper homotopy for proper multinets and took for the
morphisms of the proper shape category Sk, proper homotopy classes of proper
multinets.

The present paper is the third in a series begun by [5] where we shall study
proper shape theory utilizing small proper multivalued functions. In the second
[6] the first author considers certain morphisms of the category Shy, called sur-
jections, injections, and bijections, while here we shall introduce and investigate
proper shape invariants related to shape dimension and movability from shape
theory [4]. In other words, we shall transfer into proper shape theory from shape
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theory concepts of tameness and movability. The fourth part of the series [7] will
do a similar thing with the first author’s properties of smoothness and calmness.

Let us describe the content of the paper in greater detail. In Section 2 we recall
notions and results from [5] that are necessary in further developments. The next
Section 3 studies properly Mé’g-tame spaces. The origin for this notion could be
traced back to L. Siebenmann’s tame at infinity spaces [12]. The idea is that we
require that small enough proper multivalued functions from members of a class
of spaces B into a given space X factor through some member of another class C
also through sufficiently small proper multivalued functions. This concept is re-
lated to the notion of shape dimension [4] and could be regarded as a substitute
for it in the proper shape theory. We prove that this is an invariant in the category
Shy, explore the role of classes B and C, and study what kind of maps will pre-
serve and inversely preserve properly Mg-tame spaces. The classes of proper
M3-surjections and proper M~ -injections mentioned above are of key importance
here.

In the following Section 4 a special case when C is the class T of all trees
(which we call properly MB_contractible spaces) are related to Sher’s results.
Then we move on to consider in Section 5 properly M3B_movable spaces which
are the analogue of movable compacta [4] in proper shape theory.

Finally, in Section 6 we consider dependence of these notions on classes B and
C under the assumption that they are connected with each other by morphisms

from [6].

2. PRELIMINARIES ON PROPER SHAPE THEORY

Let X and Y be topological spaces. By a multivalued function F: X =Y we mean
a rule which associates a nonempty subset F(x) of Y to every point x of X. A mul-
tivalued function F: X — Y is S-proper provided for every compact subset C of ¥
its small counterimage F'(C) = {x €EX| F(x) CC} is a compact subset of X. On the
other hand, F is B-proper provided for every compact subset C of Y its big coun-
terimage F"(C) = {x EX|F(x) N C = &} is a compact subset of X. We shall use the
term proper to name either S-proper or B-proper. However, in a given situation,
once we make a selection between two different kinds of properness it is under-
stood that it will be retained throughout.

Observe that for single-valued functions the two notions of properness coin-
cide. Classes of S-proper and B-proper multivalued functions are completely un-
related [5]. It follows that each of our notions and results involving proper
multivalued functions actually has two versions.

Let Cov(Y) denote the collection of all numerable covers of a topological space
Y (see [1]). With respect to the refinement relation > the set Cov(Y) is a directed
set. Two numerable covers o and T of Y are equivalent provided o>tand t> 0. In
order to simplify our notation we denote a numerable cover and it’s equivalence
class by the same symbol. Consequently, Cov(Y) also stands for the associated
quotient set.

Let o €Y. Let o denote the set of all numerable covers of Y refining o while
o* denotes the set of all numerable covers T of Y such that the star st(t) of T re-
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fines o. Similarly, for a natural number n, o*" denotes the set of all numerable
covers T of Y such that the n-th star st”(t) of t refines o.

Let Inc(Y) denote the collection of all finite subsets ¢ of Cov(Y) which have a
unique (with respect to the refinement relation) maximal element [c] € Cov(Y).
We consider Inc(Y) ordered by the inclusion relation and regard Cov(Y) as a sub-
set of single-element subsets of Inc(Y). Notice that Inc(Y) is a cofinite directed
set.

For our approach to proper shape theory the following notion of size for mul-
tivalued functions will play the most important role.

Let F: X — Y be a multivalued function and let a € Cov(X) and y € Cov(Y). We
shall say that F is an («,y)-function provided for every A € athere is a C4 €y with
F(A) C Cy4. On the other hand, F is y-small provided there is an o € Cov(X) such
that F is an (a,y)-function. For a o-small multivalued function F: X —Y we use
S(F,0) to denote the family of all numerable covers a of X such that F is an (o, 0)-
function.

Next we introduce the notions which correspond to the equivalence relation of
proper homotopy for proper maps.

Let F and G be proper multivalued functions from a space X into a space Y and
lety bea numerable cover of Y. We shall say that F and G are properly y-homo-
topic and write Fig provided there is a y-small proper multivalued function H
from the product X x / of X and the unit segment J = {0, 1] into ¥ such that F(x) C
H(x,0) and G(x) C H(x, 1) for every x € X. We shall say that H is a proper y-ho-
mgtopy that joins F and G or that it realizes the relation (or proper homotopy)
F=G.

The following lemma from [5] is crucial because it provides an adequate sub-
stitute for the transitivity of the relation of proper homotopy.

LEMMA 2.1: LetF, G, and H be proper multlvalued functions from a space X
into a space Y. Let €Y and T € 0*. IfFLZGand FZ H, then F 2 H.

The proof of Lemma 2.1 requires an interesting proposition [8, p. 358] on nu-
merable covers of the product X x I of a space X with the unit segment I. We as-
sume that the reader is familiar with this result and the notion of a stacked
covering of X x I over a numerable cover of X. For a numerable cover o of X x I,
we shall use D(X, 0) to denote the collection of all numerable covers T of X such
that some stacked covering of X x I over < refines . As a consequence of the
above proposition, this collection is always nonempty.

The following two definitions correspond to Ball and Sher’s definitions of
proper fundamental net and proper homotopy for proper fundamental nets from
[2].

Let X and Y be topological spaces. By a proper multinet from X into Y we shall
mean a collection ¢ = {F,|c € Inc(Y)} of proper multivalued functions F.: X —Y
such that for every y € Cov(Y) there is a ¢ € Inc(Y) with Fd:.! F,for every d >c.
We use functional notation @: X — Y to indicate that ¢ is a proper multinet from
Xinto Y. Let M,(X, Y) denote all proper multinets @: X — Y.

Two proper mu]tmets ¢ ={F.} and ¢ = {G_} between topological spaces X and
Y are properly homotopic and we write @ = ¢ provided for every y € Cov(Y) there
is a c €Inc(Y) such that Fy = Gd for every d > c¢. On the other hand, we write cpl P
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and call @ and y properly y-homotopic provided there is a ¢ € Inc(Y) such that
Fdl G, for every d >c.

It follows from Lemma 2.1 that the relation of proper homotopy is an equiva-
lence relation on the set My(X,Y). The proper homotopy class of a proper multinet
@ is denoted by [@] and the set of all proper homotopy classes by Shy(X,Y).

Our goal now is to define a composition for proper homotopy classes of proper
_ multinets. Let ¢ = {F.}: X =Y be a proper multinet. Let ¢: Inc(Y) —= Inc(Y) be an
increasing function such that for every ¢ € Inc(Y) the relation d, e > ¢(c) implies
the relation Fy L F,. Here we make an assumption that an increasing function ¢
from a partially ordered set P into itself always satisfies the condition that o(p)
>p for every p EP. Let C ={(c, d, €)| c EInc(Y), d, e >(c)}. Then C is a subset
of Inc(Y) x Inc(Y) x Inc(Y) that becomes a cofinite directed set when we define
that (c, d, e)>(c', d', e)iff c>c',d>d',and e >e'. We shall use the same notation
@ for an increasing function @: C — Cov(X xI) such that Fy and F,are joined by
a proper (g(c, d, €),[c]) homotopy whenever (c, d, e) €C. Let : C — X be an
increasing function such that [¢(c,d,e)] ED(X, ¢(c, d, e)) for every (c,d,e) € C.
In [5] it was proved that there is an increasing function ¢*: Inc(Y) — Inc(X) such
that (1) ¢*(c) > (c, (c), p(c)) for every ¢ € Inc(Y), and (2) @* is cofinal in o,
i.e., for every (c, d, €) € C there is an m € Inc(Y) with @*(m) > @(c, d, e). With
the help of functions ¢ and ¢* we shall define the composition of proper homo-
topy classes of proper multinets as follows.

Let ¢ = {F.}: X = Y and ¢ = {G;}: Y — Z be proper multinets. Let ) = {H,},
where Hy = Gy © Fopr(s) for every s € Inc(Z). Observe that each Hj is a proper
multivalued function because the composition of two proper multivalued func-
tions is a proper multivalued function. In [5] it was proved that the collection ¥
is a proper multinet from X into Z. We now define the composition of proper ho-
motopy classes of proper multinets by the rule [{Gg}] o [{Fc}] = [{Gy) °
Fopx(syt]- This composition of proper homotopy classes of proper multinets is
well-defined and associative.

For a topological space X, let X = {I,}: X — X be the identity proper multinet
defined by I, = idy for every a € Inc(X). It is easy to show that for every proper
multinet g: X — Y, the following relations hold:

[¢] ° [I*] = [¢] = [I"] = [9].

We can summarize the above with the following main result from [5].

THEOREM 2.2: The topological spaces as objects together with the proper ho-
motopy classes of proper multinets as morphisms and the composition of proper
homotopy classes form the proper shape category Sh,.

The above constructions may be done without any reference to S-proper and
B-proper multivalued functions. In this way we shall get the shape category Sh.
On the other hand, in both cases, we may require that all multivalued functions
belong to a class of multivalued functions which is closed with respect to pastings
from the proof of Lemma 2.1 in [5] and compositions. In particular, we may as-
sume that they are either upper semicontinuous or lower semicontinuous.
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3. PROPERLY M(ﬁ-TAME SPACES

Let B and C be classes of topological spaces. A space X is properly M(?-tame
provided for every o € Cov(X) there is a T € Cov(X) such that for every B € B and
every proper t-small multivalued function F: B —X thereisa C € C and a proper
o-small multivalued function H: C — X with the property that for every o €
Cov(C) there is a proper a-small multivalued function G: B> C with F = H » G.
A class of spaces is properly Mgg-tame provided each member of it is properly
MéB-tame.

We shall first show that the property of being properly MCB-tame is a proper
shape invariant, i.e., that if X and Y are equivalent objects of the category Shp and
X is properly MéB-tame then Y is also properly Mg;-tame. In fact, a much better
result is true. The properly MéB-tarne spaces are preserved under the following
weak form of domination.

A class of spaces B is properly M-dominated by a class of spaces A provided
for every B € B and every p € Cov(B) there isan A € A and a proper B-small
multivalued function G: A — B such that for every a € Cov(A) we can find a prop-
er a-small multivalued function F: B — A with G o F ~ idp.

THEOREM 3.1: A space X is properly MéB—tame if and only if it is properly M-
dominated by a class of properly M -tame spaces.

Proof: Since every space properly M-dominates itself, it remains to prove the
“if” part. Let a numerable cover o of X be given. Let n € o*. By assumption, there
is a properly MéR-tame space Y and a proper n-small multivalued function G: Y
— X such that for every & € Cov(Y) there is a proper e-small multivalued function
F: X — Y with

GoF2 idy. (1)

Let 8 € S(G,n). Since Y is properly Mcl;-tame, there is an € € Cov(Y) such that for
every B € B and every proper g-small multivalued function D: B =Y there is a
CEC and a proper 8-small multivalued function L: C — Y so that for every
% €Cov(C) there is a proper n-small multivalued function H: B — C with

piroH 2

Pick a proper e-small multivalued function F such that (1) holds. Let M be a prop-
er n-homotopy that realizes the relation (1). Let L € D(M, 1)) and 6 € S(F,¢). Let
1 € Cov(X) be a common refinement of ¢ and 6. Then t is the required numerable
cover.

To verify this, consider a member B of B and a proper t-small multivalued
function K: B —> X. The composition D of K and F is a proper e-small multivalued
function from B into Y. Pick C and L as above and let N denote the composition
G o L. Observe that N is a proper o-small multivalued function.

Let m be a numerable cover of C. Choose a proper nt-small multivalued function
H so that (2) is true. Let P be a proper d-homotopy joining D and L o H. Then

K—?‘.—GOFOK. 3)
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because M o (K x id)) is a proper n-homotopy joining K and G © F ¢ K, and
GoFoKANoH. @

because G o Pis a proper n-hgmotopy joining G o F o K and N o H. The relations
(3) and (4) together imply K=NoH. O

The proper M-domination is weaker than the quasi-ShP—domination and thus
also weaker than Sh,-domination. Recall that a class of spaces A is Shy-domi-
nated or properly shape dominated by a class of spaces B provided for every X
€ A there is a Y € B and proper multinets : X — Y and ¢: X — Y with the com-
position y o @ properly homotopic to the identity proper multinet ¥ on X. On the
other hand, A is quasi- Sh,-dominated by B provided for every X € A and every
0 € Cov(X) there is a Y € B and proper multinets ¢: X —Y and ¢: Y — X with the
composition 1 ¢ @ properly o-homotopic to the identity proper multinet Xon X.
The notion of quasi-Sh,-domination is analogous to notion of quasidomination in
[3]

It was proved in [6] that the quasi-Sh,-domination is stronger than the proper
M-domination. Observe that the quasi-Sh_ -domination is clearly weaker than the

P
Shp-domination. Therefore, we obtain the following consequence.

COROLLARY 3.2: A space is properly MéB-tame iff it is either Sh,-dominated
or quasi-ShP-dominated by a class of properly M -tame spaces.

Another example of proper M-domination provides the notion of being prop-
erly B-like. Recall that a space X is properly B-like, where B is a class of spaces,
provided for every o € Cov(X) there is a member Y of B and a proper map f:
X — Y such that the inverse f’1 : X — Y is a proper o-small multivalued function.
In [6] we showed that if a space X is properly B-like, then X is properly M-dom-
inated by B. Hence, we get the following conclusion.

COROLLARY 3.3: A space X is properly MéB-tame iff it is properly D-like,
where D is a class of properly M(?-tame spaces.

In the next two theorems we explore in which way does the definition of prop-
erly Mg-tame spaces depend on classes B and C. Their proofs are left to the read-
er.

THEOREM 3.4: Let A, B, and C be classes of spaces. If a space X is both
properly Mf—tame and properly Mcﬂ-tame, then X is also properly M(_zg-tame.

THEOREM 3.5: Let A, B, C, and D be classes of spaces such that B and D
are properly M-dominated by A and C, respectively. If a space X is properly
M3 -tame, then it is also properly M¢*-tame.

COROLLARY 3.6: Let A, B, C, and D be classes of spaces such that B and
D are (quasi) Shy,-dominated by A and C, respectively. If a space X is properly
M&-tame, then it is also properly M(?-tame.

The following weak form of the notion of being properly B-like is more in line
with our point of view because it is based on multivalued functions. It offers us
the possibility to improve Corollary 3.6 in Theorem 3.7 with a similar proof.
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Let C be a class of topological spaces. A space X is properly MC-like provided
for every o € Cov(X) there is a member Y of C and a numerable cover o of Y such
that for every p € Cov(Y) there is a proper p-small multivalued function F: X —
Y such that F~1 is a proper (e, 0)-function.

THEOREM 3.7: A space X is properly MéB-tame iff it is properly MP.like,
where D is a class of properly M -tame spaces.

In the rest of this section we shall address the question of identifying those
proper maps which will preserve or inversely preserve properly M~ -tame spaces.
The answer provide proper maps studied in [6] whose definitions we now recall

Let ‘B be a class of topological spaces. A proper map f: X — Y is a proper M3,
surjection provided for every ¢ € Cov(X) and every t € Cov(Y) there is a p €
Cov(Y) such that for every proper p-small multivalued function F from a member
of B into Y there is a proper o-small multivalued function G with F £ feG.

A special case of properM -surjections are properly right M-placid maps, i.e.,
proper maps f: X —Y such that for every o € Cov(X) and every T € Cov(Y) there
is a proper o-small multivalued function J: Y — X with f o o J % idy. In fact, every
properly right M-placid proper map is a proper M>-surjection, where S denotes
the class of all topological spaces.

Observe that a proper map f: X —> Y which has a right proper homotopy inverse
(i.e., for which there is a proper map g: ¥ = X with f g properly homotopic to
idy) is properly right M-placid. The same is true if the proper map has a right Sh -
inverse.

Another important example of properly right M-placid maps provide properly
refinable maps. We call an onto proper map f: X — Y between topological spaces
properly refinable provided for every numerable cover T of Y and every numera-
ble cover o of X there is an onto proper map g: X — Y such that fand g are t-close
and g‘1 is a proper o-small multivalued function. We call g a proper (o, T)-refine-
ment of the map f. The notion of a refinable map between compact metric spaces
was first defined by Jo Ford and James Rogers, Jr. The above extension to arbi-
trary topological spaces is particularly suitable for our theory.

LEMMA 3.8: Properly refinable maps are properly right M-placid.

Proof: Let f: X — Y be a properly refinable map. Let o and T be numerable
covers of X and Y, respectively. Let ® € t*. Let a numerable cover v of X be a
common refinement of f~1(x) and o. Let g: X — Y be a proper (v, x)-refinement of
f. Observe that g ! is a proper o-small multivalued function, the composition
fo g'1 is m-small, and since f and g are n-close for every y €Y, there is a member
of m which contains y and intersects f o ‘l(y) It follows that the function H:
Y xI—Y defined by H(y, ) = {y} Uf e g'l(y) for every (y,t) €EY xI is a proper
t-homotopy joining idyand fo g -0

The fo]lowmg result shows that properly MéB tame spaces are preserved under

proper M3 -surjections.

THEOREM 3.9: If f: X — Y is a proper MB-surjection and the domain X is a
properly M(?-tame space, then the codomain Y'is also a properly Mé’;-tame space.
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Proof: Let a numerable cover o of Y be given. Let p € o* and put a =f‘1(u).
Since X is properly M(:B-tame, there is a B € Cov(X) such that for every B € B and
every prope f-small multivalued function K: B — X there is a C € C and a proper
o-small multivalued function L: C — X so that for every y € Cov(C) we can find
a proper y-small multivalued function G: B — C with

o
Fad

K=LoG. ey

Finally, we utilize the fact that f is a proper MB—surjection to select the required
numerable cover T of Y so that for every proper t-small multivalued function F
from a member B of B into Y there is a proper B-small multivalued function K:
B — X with

F& foK. 2

Consider a B € B and a proper t-small multivalued function F: B — Y. Choose a
K and then C and L as above. Let H denote the composition of L and f. Notice that
H is a proper o-small multivalued function. At last, for a given y € Cov(C), pick
a G as above. Then from (1) and (2) we obtain the following chain of relations

FhfoKE foLoG=H-G.
Hence, F2HoGandYis properly MéB-tame. [}

The existence of a properly refinable map from a space X onto a space Y clearly
implies that X is properly MY like. Hence, as a consequence of the above Lem-
ma 3.8 and Theorems 3.7 and 3.9 we obtain the following proper version of parts
(3) and (5) of Theorem 1.8 in Kato [9].

COROLLARY 3.10: Let f: X — Y be a properly refinable map. Then X is prop-
erly M(EB-tame if and only if Y is properly Mé’g-tame.

For the inverse preservation of properly Mg-tame spaces from the codomain
to the domain we must assume that the map f is either properly left M-placid or
that it is a proper M(Z;-bijection. Let us recall the definitions of these notions from
[6].

A proper map f: X —Y is properly left M-placid provided for every UE Cov(X)
there is a proper o-small multivalued function J: ¥ — X such thatJ e fA idy.

Let B be a class of topological spaces. A proper map f: X —Y is called a proper
M€ -injection provided for every o € Cov(X) there is a T € Cov(X) and a § €
Cov(Y) such that for proper t-small multlvalued functions F and G from a mem-
ber B of B into X the relation f o F f o G implies the relation FZ2G.

At last, for classes B and C of spaces, a proper map which is both a proper
Mg-m]ectlon and properM -surjectlon will be called a proper M* -bijection. We
shall use a shorter name proper M3 -bijection for a proper M ¢ -bijection.

Observe that every proper map f: X —> Y which has a left proper homotopy in-
verse (i.e., for which there is a proper map g: Y — X with the composition g ° f
properly homotopic to idy) is properly left M-placid. The same is true if the map
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f has aleft Shy-inverse. Moreover, a properly left M-placid proper map is a prop-
er MS-injection, where S denotes the class of all topological spaces.
The following two theorems could be proved with the above techniques.

THEOREM 3.11: If a map f: X — Y is properly left M-placid and the codomain
Y is properly M(?-tame, then the domain X is also properly Mg—tame.

An important example of properly left M-placid maps provide inclusions iy x
of the proper M-retracts A of a space X. Here, we will say that a closed subset A
of a space X is a proper M-retract of X provided for every numerable cover o of
A there is a proper o-small multivalued function R: X — A such that a € R(a) for
every a EA. Hence, the following is a consequence of the Theorem 3.11.

COROLLARY 3.12: A proper M-retract of a properly Mgg-tame space is itself
properly M(tB-tame.

THEOREM 3.13: If amap f: X —Y is a proper M(g-bijection and the codomain
Y is properly Mg-tame, then the domain X is also properly MéB-tame.

4. PROPERLY MZ-CONTRACTIBLE SPACES

An important special case of properly MéB-tame spaces is when the class C is
the class ‘I of all trees. Here, by a tree we mean a locally finite, connected, and
simply connected simplicial 1-complex.

Let B be a class of spaces. A space X is properly M3B_contractible provided it
is properly ng-tame.

Since every tree is a locally compact ANR, it is easy to see that a space Xis
properly MB_contractible iff for every o € Cov(X) there is a T € Cov(X) such that
for every proper t-small multivalued function F from a member Z of B into X
there is a tree T, a proper map g: Z — T, and a proper o-small multivalued func-
tion H: T =X with F 2 H o g.

An important special case is the following. A space X is properly M-contract-
ible provided for every o € Cov(X) there is a tree T, a proper map g: X —T,and
a proper o-small multivalued function H: T — X with idy 2Hog.

For the next theorem we must also recall definitions of internally properly
calm and internally properly movable spaces. They illustrate that most concepts
in proper shape theory have appropriate internal versions.

A space X is properly internally calm provided there isa 6 € Cov(X) such that
proper maps into X which are properly o-homotopic are properly homotopic.

A space X is properly internally movable provided for every o € Cov(X) there
is a T € Cov(X) such that every T-small proper multivalued function into X is prop-
erly o-homotopic to a proper map.

THEOREM 4.1: Let X be a space which is both internally properly calm and
internally properly movable. Then X is properly M-contractible if and only if X
is properly homotopically dominated by a tree.

Proof: The “if” part is easy and it is true without any assumptions about the
space X. In order to prove the “only if” part, choose numerable covers o, T, and
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p of X such that every two proper maps into X which are properly o-homotopic
are properly homotopic, T € c*, p € 1%, and every proper p-small multivalued
function into X is properly T-homotopic to a proper map. Since X is properly M-
contractible, there is a tree T, a proper map g: X — T, and a proper p-small mul-
tivalued function H: T —>X with idy = L£H. °g. By assumption, there is a proper
map h: T — X such thath=~ % H. 1t follows that h o g2 H o g and ldxg" h o g. Hence,
idy and h o g are properly homotopic and X is properly homotopically dominated

by the tree 7. QO

COROLLARY 4.2: A locally compact ANR is properly M-contractible if and
only if it has property SUV™.

Proof: This follows from Theorem 4.1 and the property (*) in [10, p.243].
a

5. PROPERLY M2.-MOVABLE SPACES

In the present section we shall transfer from shape theory into proper shape
theory the important invariant of movability. This concept was invented by Bor-
suk [4] for compact metric spaces. We shall define properly MB_movable spaces
with respect to a class B of spaces in order to cover all possible variations of
movability (see [4]). In this and the next section all proofs are omitted since they
resemble proofs in previous sections.

Let B be a class of topological spaces. A space X is properly M B_movable pro-
vided for every o € Cov(X) there is a T € Cov(X) such that for every B € B, every
proper t-small multivalued function F: B — X, and every p € Cov(X) there is a
proper p-small multivalued function G: B =X with F = 2 G.

We shall first consider how this definition depends on the class B. Once again
the proper M-domination comes into play.

THEOREM 5.1: If a class of spaces C properly M-dominates another such
class B and a space X is properly MC-movable, then X is also properly M3B_mov-
able.

Our goal now is to show that proper MC-movabi]ity is indeed a proper shape
invariant. We can prove a far better result, namely that it is preserved under qua-
si- Shy,-domination.

THEOREM 5.2: A space X is properly MC-movable if and only if it is quasi-
Sh -dominated by a class of properly MC-movable spaces.

The following result is typical for shape theory. It illustrates the role of prop-
erly M(?-tame spaces and is similar to Borsuk’s theorem that an n-movable com-
pactum of shape dimension at most » is movable [4].

THEOREM 5.3: Let B and C be classes of topologlcal spaces. If a space X is
at the same time properly MéB—tame and properly MC-movable, then it is also
properly MEB.movable.
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The following special case of Theorem 5.3 is worth mentioning. In order to
state it, we shall first introduce the notion of proper M-P-extensors.

Let C be a class of pairs (A, B) of topological spaces with B a subspace of A.
Let classes {A|(A,B) € Cp for some B} and {B|(A,B) € C,, for some A} be denoted
by C,' and C,"".

A space X is a proper MCp-extensor provided for every o € Cov(X) thereisat
€ Cov(X) with the property that for every member (A, B) of C, and every proper
1-small multivalued function F: B — X there is a proper o—small multivalued
function G: A = X with F =G |p.

One can easily check that a proper MCp-extensor is properly MC,P -tame.
Hence, we obtain the following corollary.

COROLLARY 5.4: Let Cp be a class of proper pairs. If a space X is both prop-
erl(y MEP'-movable and a proper MCp-extensor, then the space X is also properly
"-movable.

In the rest of this section we shall consider the question of identif %mg those
proper maps which will preserve or inversely preserve properly M~ -movable
spaces. The answer provides proper maps studied in [6] whose definitions have
been recalled in Section 3. The following result resembles Theorem 3.9.

THEOREM 5.5: If amap f: X — Y is a proper Mc-surjectlon and the domain X
is properly MC-movable, then the codomain Y is also properly MC-movable.

COROLLARY 5.6: The 1mage under a properly refinable map of a properly
MC€-movable space is properly MC-movable.

In an attempt to prove an analogue of Theorem 3.11 for properly MC€-movable
spaces instead of properly left M-placid we must use the following stronger form
of this notion.

A proper map f: X — Y between topological spaces is properly left M-placid
provided for every numerable cover o of X there is a numerable cover a of ¥ and
a numerable cover T of X such that for every numerable cover p of X there is a p-
small proper (o, o)-function J: Y —> X and a proper o-homotopy H joining J o f
and idy with Tt € D(H, o).

THEOREM 5.7: If a proper map f: X — Y is properly left M-placid and Y is
properly M€ -movable, then X is also properly MC-movable.

COROLLARY 5 8: A proper M-retract of a properly MC-movable space is it-
self properly M€ _movable.

THEOREM 5.9: Iff: X—Yisa proper ME- -bijection and the codomain Y is
properly M C._movable, then the domain X is also properly M€ -movable.

6. COVERED AND EXTENDED CLASSES

In this section we shall explore dependence of all proper shape invariants
which were defined on classes of spaces involved under the assumption that these



68 ANNALS NEW YORK ACADEMY OF SCIENCES

classes are connected by either surjections or injections. The connection can be
through one of the following two notions.

Let F be a class of proper maps and let B and C be classes of spaces. We shall
say that the class C is F-covered by B provided for every C € C there isa BE B
and an h: B — C from F. Similarly, the class C is F-extended by B provided for
every C €C there isaBEBand a k: C — B from F. '

For a class of spaces B we shall use B;, B, and B, to denote the classes of all
proper Mﬂ-injections, proper Mﬂ-surjections, and proper M~ -bijections. Also,
B, BS, and ‘B® denote the classes of all proper Nﬂ-injections, proper NB-surjec-
tions, and proper NB-bijections. Moreover, if F and G are classes of maps we let
FG denote the intersection FNgG.

THEOREM 6.1: Let A, B, C, and D be classes of spaces. If a space X properly
MDA-tame and either

(cc) Bis CS{X}-covered by A and C is {X}'-covered by D,

(ce) Bis C°{X}'-covered by A and C is A’-extended by D,

(ec) Bis {X}*-extended by A and C is {X}*-covered by D, or

(ee) Bis C*{X}*-extended by A and C is A’-extended by D,
then X is also properly MéB-tame.

THEOREM 8.2: Let B and C be classes of topological spaces. If a space X is
properly MB_movable and the class C is either {X}*-covered or {X}*-extended by
‘B, then X is also properly MC€-movable.
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The Jordan Curve-type Theorems for the
Funnel in 2-dimensional Semiflows

KRZYSZTOF CIESIELSKI*

Mathematics Institute
Jagiellonian University
Reymonta 4, 30-059 Krakéw, Poland

ABSTRACT: We investigate “the past” of a nonstationary point x in a semiflow n: R, x M
—> M on a 2-manifold M. In a natural way there are defined two boundary trajectories T, and
Ty; by the funnel we mean F(x) = {y:n(t, y) = x for some ¢} and we put D(x) = F(x)\(T,
U T}). We show that if x is not a point of negative unicity, then D(x) is homeomorphic to R“.
Also, if T is a nonboundary trajectory through x, then D(x)\T has two components for a regular
point x and D(x)\T has two or three components for a periodic point x.

1. INTRODUCTION

The behavior of solutions and topological properties of trajectories play a ma-
jor role in the theory of topological dynamical systems (flows) and qualitative
theory of differential equations. In this paper we give a very precise description
of the topological properties of negative trajectories through a nonstationary
point x in a semiflow on a 2-manifold.

In [5], the funnel cuts and sections of a point x, i.e. “the past” of a point x in
time ¢ (denoted by F(¢t, x), which appears to be a point or an arc) and in interval
time [s, t], are characterized. This paper may be regarded as a continuation of in-
vestigations in [5]. Other applications of [5], paying attention to limit sets in
semiflows on 2-manifolds, were shown in [4].

In this paper we investigate the “ways” along which we can reach a point x.
On account of [5], we can single out two boundary trajectories which are patu-
rally defined according to the properties of F(¢, x); roughly speaking, they are
given by the end-points of the arcs F(z, x) for t = 0. We investigate the set D(x)
which is “the past” of x without just these two boundary trajectories. We show
that this set is homeomorphic to the plane.

Also, we prove that for the set D(x) the Jordan curve-type theorems hold. Any
negative trajectory through x cuts D(x). If a point x is regular, then any nonbound-
ary trajectory cuts D(x) into two regions homeomorphic to the plane. If a point x
is periodic, then any nonboundary trajectory cuts D(x) into two or three regions,
each of them homeomorphic to the plane. Such a trajectory T(x) cuts D(x) into
three regions if and only if the (unique) positive trajectory through x is contained
in T(x) and it is equal neither to T(x) nor to any boundary trajectory.

Mathematics Subject Classification: Primary 54H20; Secondary 54F65, S7TNOS.

Key words and phrases: semiflow, semidynamical system, 2-manifold, funnel, trajec-
tory, periodic point, regular point, the Jordan Curve Theorem, plane.
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In the particular situation where the phase space is equal to R?, these theorems
were presented by the author in the University of Warwick preprint. The results
presented in this paper are more general, but also the proofs given here are much
simpler than those in the preprint.

Note that the theorems also hold for noncompact and nonorientable 2-mani-

folds.

2. PRELIMINARIES

By an arc (a Jordan curve) we mean a homeomorphic image of the compact
interval [-1, 1] (a unit circle). By ab we denote an arc with end-points a, b. For a
given set X we denote its interior by IntX, its closure by CLX and its boundary by
ax.

When we consider a function f defined on a set containing an interval (a, b),
we denote the set f((a, b)) by f(a, b). In the same way we introduce the symbols
fla, b), f(a, b] and f[a, b]. v

A semiflow (semidynamical system) on M (which is called a phase space) is a
triplet (M, R,, @) where xi: R, x M — M is a continuous function such that (0, x)
= x and n(t, ®(u, x)) = n(¢t +u, x) for any ¢, u, x.

Assume that a semiflow (M, R,, ) on a 2-manifold M (without boundary) is
given.

By n*(x) we denote {n(t, x): =0 } and call it the positive trajectory through
x. We put F(t, x) = {yEM: a(t, y) = x}, F([u, v], x) = U{F(t, x): t€Ju, v]}
for u < v and F(x) = U{F(t, x): t 20}; the last set is called the funnel through x.

A function o: (o, 0] = M is called a negative solution through x if o(0) = x,
a(t, o(u)) = o(t+u) whenever u, t + u €(at, 0], £ 20, and ois maximal relative to
the above properties, with respect to inclusion. Usually such functions are called
maximal negative solutions; in this paper “negative solution” or “solution” means
maximal negative solution. It is known [2] that every solution is continuous. For
a solution o: (o, 0] = M we call its image o(a, 0] a negative trajectory through
x. According to the main results of [11] and [2, Theorem 11.8] we may
assume without loss of generality that the domain of any negative solution is
equal to (-, 0]. This is because we can transform the system by a suitable iso-
morphism which does not change trajectories (and therefore their topological
properties), but only changes the speed of movement along trajectories; note that
such a reparametrization can change some of the dynamical properties of the sys-
tem.

We put L,"(x) = {y EM: o(t,) — y for some ¢, — —}, where o is a negative
solution through x and call it a negative limit set. Note that for a given point x,
different negative solutions can give different negative limit sets.

A point x is said to be:

(a) stationary if n(t, x) = x for every t 20,

(b) periodic if there exists a ¢ > 0 such that (¢, x) = x and x is not stationary;

the smallest ¢ with the above property is called the period of x,
(c) regular if it is neither stationary nor periodic,
(d) a point of negative unicity if for any t = 0 the set F(¢, x) has precisely one
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element,
(e) singular if there exist y; = y, € R? and a ¢ > 0 such that (¢, y;) = n(t, y,)
= x but ;(u, y;) = n(u, y,) for any u €{0, ¢t).

Note that if x is a point of negative unicity then there is only one negative so-
Iution through x and if x is not a point of negative unicity then there exists a A =
0 such that for any solutions o}, 0, through x and ¢ € [A, 0] we have oy(f) = 0,(2),
moreover 01(A) = 0y()\) is a singular point.

For the basic properties of flows, semiflows and topological background used
here the reader is referred to the books [2], [9], [13], [15].

Throughout this paper we assume that (M, R,, x) is a given semiflow on a 2-
manifold (without boundary) M. We admit also noncompact manifolds. We as-
sume that x € M is a nonstationary point which is not a point of negative unicity
(the funnel through a stationary point cannot be so well characterized —compare
the examples in [5]; for a point of negative unicity the analogous description is
trivial, compare Remark 3.4). Recall that we assume that any solution is defined
on (-, 0], as this involves no loss of generality.

3. PREPARATORY THEOREMS

We start from a proposition which is an immediate corollary from [5, Theorem
3.4].

PROPOSITION 3.1: For a given point x there exists an s = 0 such that F(¢, x) is
a point for ¢ = s and an arc for ¢ > s.

DEFINITION 3.2: If x is a periodic point we denote by T its period; if x is a
regular point we denote by T an arbitrarily fixed positive number. By A we denote
sup {s: F(s, x) is a point}.

Assume that a; and by are the end-points of the arc F(A + %, x). If a, and b,
are the end-points of the arc F(Ah + n%, x) = m, then by a,, 1 and b, , 1 we
denote the end-points of the arc F(A + (n + 1)% , X) in such way that n(% » 8y 1)
= a,and i3, by, 1) = b, We define g, : (-, 0] — M by:

n(\ + 5 ~t,ay), fort€[0,A + 31,

Ca("t) = {

ah + (n+1)3 —ta,, 1), fortE[A + n3, A + (n+1)5].

The mapping o, is defined in an analogous way. It is very easy to verify that
o, and oy, are negative solutions. We call them boundary solutions, the ranges of
these solutions will be called the boundary trajectories.

Roughly speaking, boundary trajectories are given by the end-points of the
arcs F(t, x).

NOTATION 3.3: We will investigate the topological properties of trajectories
contained in the funnel through x. We denote:
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(a) off, 0 — the boundary solutions through x;
(b) Ty(x), To(x) — the boundary trajectories given by the solutions or* and
X,

[0 88

(c) D(x) = Fx)\(T1(x) U T(x));

(d) Ti([u, v],x) = o;*[-v, -u] fori = 1, 2, u <v (these sets are the segments
of trajectories Ty(x) and Ty(x));

(e) if x is a periodic point, we denote by < its period.

REMARK 3.4: If x was a point of negative unicity, then we could define
boundary trajectories in an obvious way and we would get Ty(x) = Ta(x) = F(x),
so D(x) = @.

REMARK 3.5: For a periodic point we may distinguish three types of negative

trajectories:

(a) homeomorphic to a circle (there is only the one solution which gives such
negative trajectory, this trajectory is equal to x*(x)),

(b) given by a solution o, where o is an injection,

(c) given by a solution o, where o is not an injection, but o(-e, 0] is not
homeomorphic to a circle; the negative trajectory given by o is a figure-
of-six (compare [15}) and there is an n = 1 such that o|(_w’_m] is an injec-
tion and of-nt, 0] is a circle.

The boundary trajectories may be only of types (a) or (b).

x xr xr

FIGURE 1

From Theorem 4.2 in [5] and the definition of boundary trajectories we imme-
diately obtain the following two propositions:

PROPOSITION 3.6: Assume that x is a singular point; moreover, if x is period-
ic, we assume that ¢ < T (compare 3.3). Then F([0, ¢], x) is homeomorphic to a
triangle with the sides equal to Ty([0, £1, x), To([0, ¢}, x) and the arc F(z, x).

PROPOSITION 3.7: Assume that x is a singular periodic point and ¢ > ©. Denote
by a, and b, the end-points of the arc F(z, x). Then F([0, ¢], x) is homeomorphic
to an annulus or a Mébius strip. Moreover, the boundary of this set is equal to
7([0, ©], a,) Un([0, 7}, b;) UL, where L is the largest subset of the arc F(z, x) with
LNF(0,¢t),x) = &.
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F(t,z)
/ F(t,z) a \\
FIGURE 2

From 3.7 we get:

COROLLARY 3.8: If under the assumptions of Proposition 3.7 one of the
boundary trajectories, say T1(x), is equal to a*(x) (which is homeomorphic to a
circle), then F([0, ¢], x) is homeomorphic to an annulus with one boundary circle
equal to m*(x) and the second boundary circle equal to Tp([t -7, ¢], x) UL, where
L is the largest subset of the arc F(¢, x) with L NF([0, £), x) = .

Proof: Let a, be the end-point of an arc F(¢, x) with a, € n*(x). According
to 3.7, n([0, ], a,) is contained in 3F([0, ¢], x). The set x([0, ], a,) = ntt(x) is a
circle not equal to dF([0, ], x), so F([0, ¢], x) must be an annulus and one of the
components of its boundary is equal to x¥(x). O

PROPOSITION 3.9: Let A = sup {s: F(s, x) is a point}. Denote by y the unique
element of F(A, x). Then D(x) = D(y) and for any negative trajectory I(x)
through x we have D(x)\T(x) = D(y)\T(y), where T(y) Un([0, A}, y) = T(x).

The proof follows immediately from the definitions of D(x) and boundary tra-
jectories.

4. MAIN RESULTS

According to Proposition 3.9 we may assume, without loss of generality, that
x is a singular point. Thus, throughout this section x denotes a nonstationary sin-
gular point. Recall that by T we denote the period of x if x is periodic.

LEMMA 4.1: Let y be a Jordan curve contained in D(x). Then there exists a
¢t >0 such that y C F([0, ), x).
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Proof: Take a p €Y. There is a ¢, with p € F(zp, x) and (by 3.6 and 3 pe
IntF([0, ¢, + %], x). The family {IntF([O, ¢, + ;, x): p €4} is an open covering
of y; by the compactness of y we get yC U{IntF([O, t; + %], x:i=1,...,n}if
we fix t = T +max{ty, ..., t,}, we obtain that y CF([0, £),x). Q

LEMMA 4.2: If a singular point x is regular, we assume that ¢ is an arbitrary
positive number; if x is periodic, we assume that ¢t < t. Then the set
F([0, 1), )\(T4([0, £], x) U Ty([0, ], x)) is homeomorphic to R?.

This is a consequence of Proposition 3.7.
The following lemma is essential to the proof of our main theorems.

LEMMA 4.3: Assume that x is a periodic point and ¢><. Then
F([0, 1), x)\(T1([0; t], x) U Tx([0, ¢, x)) is homeomorphic to RZ.

Proof:

Case 1: Assume that x*(x) is not a boundary trajectory.

According to 3.7, F([0, £), x)\(T1([0, ], x) U Tx([0,7], x)) = IntF([O, #), 0V,
where J = Ty([0, ¢ —t],x) UTy([0, ¢ -T], x) is an arc as x is singular.

For each s € [0, © ~ ], consider the arc I'(s) = Ty([s, ¢ - T], x) U F(s, x) U
T,([s, t -], x). Note that [(0) = J, I(¢ -t) = F(t -7, x), so F(t -7, x) is deformed
into J as s varies from ¢ - t to 0. The end-points of the arc I'(s) belong to
dF([0, t], x), the non-end-points of I'(s) belong to Int F([0, #), x).

Now it is enough to show that Int F([0, £), x)\F( - T, x) is homeomorphic to R2.
Since F([0, {], x) is an annulus or a Mdbius strip, then either IntF([0, 1), O\F(t -
T, x) is homeomorphic to R? or IntF([0,?), x)\E(t -1, x) is not connected. We
show that IntF([0,£), x)\F(¢ - 1, x) is connected which will finish the proof in
Case 1. Indeed, let yq,y, € IntF([0, £), x)\F(t -, x) = n((0, 7), F(t, O\{a,, b}
(a, and b, are the end-points of F(¢, x)); then n(sy, y1) = n(sy, y2) = x for some
51, 52 € (t =7, £). We may assume that 51 < s, so there exists a z € F(sp, x) with
(s, - 51, 2) = y1. Denote by K the subarc of F(s,,x) joining z with y,. Thus KU
a([0, s, - s1],) is a connected set, contained in IntF([0,?), x)\F(z - 1,x), joining

Case 2: Assume that n*(x) is a boundary trajectory.

According to Corollary 3.8 and Remark 3.5 we have that F([0,¢], x) is an an-
nulus, T1([0,£],x) = =n*(x) and T([¢, t - T],x) is contained in dF([0,1], x). More-
over, there is an o € [0,t) such that Ty([ — a,0], x) Cx™(x) and Ty([t - T, - &}, x)
is an arc with the end-points belonging to different components of dF([0,¢], x),
all non-end-points of this arc belong to IntF([0,#], x). This shows that F([0, ),
X)\(T4([0, £], x) U Ty([0, ], x)) is homeomorphic to the plane and finishes the
proof. 0

We can now formulate the first main result of the paper.
THEOREM 4.4: The set D(x) is homeomorphic to the plane.

Proof: We show that D(x) is an open, connected and simply connected set,
which according to the classification theorems [14, Theorem 3] proves that D(x)
is homeomorphic to R2.
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Step 1: Take a y € D(x); therefore y € F(s, x)\(T1(x) U To(x)) for some s. There
is a ¢ (if x is periodic, we take ¢ > 1) with y € F([0, £), x)\(T1([0, £], x) U T([0, ¢],
x)), the last set is contained in D(x) and, according to 4.2 and 4.3, open.

Step 2: We show that D(x) is arcwise connected. Take y,z € D(x), hence there
are sy, 55 >0 with y EF(s1,x), zEF(s3,x), y, zE T1(x) UTp(x). Put t = 57 + s, + 7
(for a regular point x take T = 1). Then y and z belong to F([0, ), x)\(T{([0, ¢,
x) U To([0, t], x)) which (again from 4.2 and 4.3) is an arcwise connected set con-
tained in D(x). Thus we can find an arc joining y and z, contained in D(x).

Step 3: Take a Jordan curve y C D(x). From Lemma 4.1 we can find a ¢ with y
C F([0, ©), x); if x is periodic we take ¢ > t. Therefore we have y C F([0, &),
)\(T1([0, £], x) U Tx([0, 1], x)); according to 4.2 and 4.3 the last set is homeomor-
phic to R and contained in D(x), which gives that y is contractible in D(x). This
proves that D(x) is simply connected. O

Before we turn to the Jordan curve type theorems we need the following

LEMMA 4.5: If a trajectory given by a nonboundary negative solution o is not
equal to m*(x), then L ;~(x) N D(x) = &.

Proof: First assume that o is an injection. Suppose to the contrary that p €
L g (x) N D(x). From 3.6 and 3.7 we have that p € IntF([0, ], x) for some ¢ > 0.
By the definition of L 5~(x) we can find a sequence {t,} with ¢, = o, n(z,,0(~t,))
= x and © (~t,) — p; it follows that for sufficiently large n we have o(-t,) €
F([0, ], x) and ¢, > t. Then x = =n(t,, o(-t,)) = a(s, o(-t,)) = o(s —¢,) for some
s€][0, f] and s - ¢, < 0, which is a contradiction.

If o is not an injection then there is a k such that 0|(_°°,_,“] is an injection and
o(~kt) = x. Put 0'(u) = o(-kt +u) for u =0; then o' is an injective negative so-
lution through x with Ly ~(x) = L4 (x) which finishes the proof. ()

The next main theorems of the paper are Theorem 4.6 and Theorem 4.7. They
will be proved jointly.

THEOREM 4.6: Let x be a regular point. Then for every nonboundary negative
trajectory T through x the set D(x)\T has two components, each of them homeo-
morphic to R2.

THEOREM 4.7: Let x be a periodic point. Then for every nonboundary nega-
tive trajectory T through x the set D(x)\T has either two or three components, each
of them homeomorphic to R2. The set D(x)\T has three components if and only if
x*(x) is not a boundary trajectory and the trajectory T fulfills the condition (c) of
Remark 3.5 (in other words, % (x) C T and n*(x) = T).

Proof:

Step 1: First assume that a trajectory T is given by an injective negative solu-
tion o. Then there is a A = 0 such that o[A, 0] is contained in one of the boundary
trajectories and o(-%, A) C D(x). Applying Lemma 4.5 we get that o(u) has no
cluster point in D(x) whenever u — A~ and u — —o. Denote by S the one-point
compactification of D(x); S = D(x) U {} and § is homeomorphic to a 2-dimen-
sional sphere. Consider o(~%, A) as a subset of S. Thus o(«) — » for u — A~ and
for u — -, Therefore, o(—», A) U {»} is a Jordan curve contained in S, so it
cuts S into two components, each of them homeomorphic to RZ. This shows that
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o(-o, ) also cuts D(x) = S\{e} into two regions, each one homeomorphic to R2.
We have that D(x)\T = D(x)\o(-%,\) which finishes the proof in the case of a
trajectory given by an injective solution.

Step 2: Take T = m*(x) and assume that x*(x) is nonboundary trajectory. De-
note by o the unique negative solution with the range equal to the trajectory
a*(x) (compare Remark 3.5). There are ay, o € [0, T) such that a(s) = of(s) for
s €[-0;, 0] and o(-», - o) N0 (-», —0y) = &, i = 1,2. If we put o =max{ay,
ay}, then n*(x) N D(x) = o(-t, -a) = n((0, T - ), x). The last set is a homeo-
morphic image of an open interval (0, T - &) with no cluster point in D(x) when u
— 0% and u — (v - o)". The same reasoning as in Step 1 implies that D(x)\n*(x)
has two components, each of them homeomorphic to R

Step 3: Assume that o is a noninjective solution with o(-e, 0] = T and
a*(x) is not a boundary trajectory. Hence, there is a k = 1 such that o(~kt) = x
and 0|(_L,,,,_kT is an injection. Note that o[—kt, 0] = m*(x). Using Step 2 we get
that D(x)\n*(x) has two components, say Dq and Dy, and 8Dy = 8D, C xt(x). We
show that o(~o, —kt] C ClDq or o(-», —kt] C ClD;. Suppose, contrary to our
claim, that o(a;) € D{ and o(ay) € D, for some oy, @y, say @ < . Therefore,
ofay, 0] N w*(x) = @, so o(B) € n*(x) for some B € (ay, 0p), and consequently
o(ay) = m(ay - B, o(B)) € n*(x) which contradicts the fact that o(oy) EDy. We
may assume without loss of generality that o(-e, —kt] C C1D;. According to Re-
mark 3.5 we have that o(-, s) C Dy and o(s, —kt] C n*(x) for some s € (-kt -7,
—kt]. Now consider the injective solution o’ given by o'(x) = o(-kt +u) foru =
0. The same reasoning as in Step 1 (applied to the case of the region Dy and the
solution o) gives that D;\T = D{\0(~, 0] has two components, each of them ho-
meomorphic to RZ. Thus finally we obtain that D(x)\T has three components,
each of them homeomorphic to the plane.

Step 4: Consider the case where n*(x) is a boundary trajectory and o is not
injective. As in Step 3 we have that T = o(-%, —kt] U w*(x) and 0|(_w)_h] is in-
jective. Here we get D(xN\T = D(x)\o(-%, ~kt] as n*(x) N D(x) = & and the the-
orem follows from Step 1. Q

EXAMPLE 4.8: Let us define a system (R?, R,, m) as follows (in polar coordi-
nates):

0 ifr =20,
(1, p+1) ifr =1
~ (r+t,9) if0<r+ts<l,
w(t, (. 9)) = (1, 9+r+t-1) ifr+t=landr<1
(r-t, o ifr-t=1

(1, p+t-r-1) ifr-t=landr>1

Consider x = (1, 0). Then F(x) = Rz\{(O, 0)}; the boundary trajectories are
equal to (0,1] x {0} and [1, ) x {0}. Consider the negative trajectories T; = ({1}
< [=Z, 0D U([1, @) x{ - F}) and T, = ({1} x[-7F, 0]) U([1, @) x {=§ }). Then
D(x)\T; has two components and D(x)\T, has three components. Some trajecto-
ries of the system are shown in Figure 3.
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FIGURE 3

REMARK 4.9: According to [5, 4.6] we get that the same description of F(x)
and D(x) remains valid for a semiflow on an arbitrary metric space (not necessar-
ily 2-manifold) under the assumption that x is a nonstationary point and (possibly
after a suitable isomorphism, see [11]) there is a ¢t = 0 with F(¢, x) being a point
for ¢ <ty and an arc for ¢ 2 ¢4,
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ABSTRACT: We investigate the question of the existence of a compact sequential space
with sequential order more than 2. We establish a connection with an interesting problem about
maximal families of almost disjoint subsets of ®. We also obtain a partial result by showing that
it is consistent that every countably tight compact space of weight b is Fréchet-Urysohn. The
main task is to work with Shelah’s forcing for obtaining a model of b <s =a.

1. INTRODUCTION

The sequential order of a space is the supremum of the number of times that
one must iterate the taking limits of convergent sequences in order to get the clo-
sure; that is, for ACX, A® =4, A0 = {xeX: (Hx,: nEw} CA) {x,: nEw}
converges to x}, and A® - (U5<QA(B))(1). A space is sequential if and only if
it has a sequential order (< w;), and a space is Fréchet-Urysohn if its sequential
order is one. A simple example of a compact space with sequential order two is
the one-point compactification of a W-space, i.e., a space defined from a maximal
almost disjoint family of a subsets of w.

It was shown, by Bashkirov [4], to follow from CH that there are compact
spaces of any sequential order up to w; and that MA implies the existence of a
compact space of sequential order three.

2. TOTALLY MAD FAMILIES

Let us consider a simple construction of a compact space with sequential order
three from the assumption b = ¢. We will then introduce an interesting property
and question about mad families arising from this construction (what we will call
totally mad families).

PROPOSITION 2.1: (b =c) There is a compact space with sequential order 3.

Proof: We define two families of subsets of , {a,: a<c} and {b,: a<c},
by induction on a. The inductive hypotheses are
(1) {ap: B <a} is an almost disjoint family,
(2) for each B,y <q, ag is either almost contained in b, or is almost disjoint
from it,
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(3) for B <y <o, there is a finite subset (possibly empty) Fpy of y + 1 such

that bg N by is almost equal to U{aE :EEFg )

The goal is to have that {a,: a <c} is a maximal almost disjoint family and
for each infinite A C ¢ there is an infinite A’ CA and a f <c so that a,, C* by for
each a €A’. Therefore, we simply fix enumerations {x,: a<c} and {y,: 0sa
<c} of P(w) and [c]®, respectively, where y, C a for all a = o.

So we add two more conditions to our inductive hyptheses:

(4) each B <a, xg meets some member of {ay:y = B} in an infinite set,

(5) each y <a, there is B = y so that ag C* bg for infinitely many § in y,.

Let us show that we can find suitable a, and by. Consider xq; if x4 N ag is in-
finite for some P < a then let a, = @&. So assume that x, does not meet ag in an
infinite set for any p < a. If there is a B < o such that x, meets by in an infinite
set, then let a = xq N bg (since x4 is almost disjoint from all the previously cho-
sen a,’s, we have, by inductive hypothesis 3, there is at most one such p!). If there
is no such B, then we can let ay =x,.

Next consider the sequence {ag: EE€yq}. If there is a p < o such that ag N by
is infinite (hence, cofinite in ag) for infinitely many EEy, thenlet by = &. Oth-
erwise note that since b = ¢, we can find a function k €Yew such that for each f <
a, there is a finite Fg o C yq such that ag C* by for each EEFg o, ag N by is finite
foreach E€yy - Fpqa and (ag - h(E)) N bg is empty for all but finitely many § €
¥ o Furthermore, ag NVUge, ag - h(E) is finite for all B=<a, B&Ey,. So we let by
= UEE}’a ag — h(). Note that it would suffice if we could do this for an infinite
subset of y .

The Stone space of the Boolean subalgebra of P(w) generated by the union of
the two families {ay: o <c} and {b,: o <c} together with the finite sets is our
desired space X. The usual ¥-space constructed from the maximal almost disjoint
family {aq: @ <c} is a subspace of X. The two scattering levels of W constitute
the first two scattering levels of X. The next scattering level of X consists of ul-
trafilters corresponding to each by, i.e., {bg — ( UFu n): n € w and F is a finite
subset of {a,:y<c}} generates an ultrafilter of B. There is only one other point
in the space, i.e., we have the one-point compactification of the points described
so far. It is therefore trivial that X is compact and sequential. The inductive hy-
potheses 4 and 5 guarantee that the sequential order of X is at least 3, in fact it is

equalto3. Q

In the above construction, consider the step in which we chose b, We were
given the family {ag: EEyq} (an arbitrary countable subfamily of {ag: § <c}).
We can fix an enumeration {&,: n € o} of y, and, by removing a finite set from
each, we may assume that the ag are pairwise disjoint. Now, for each v, there is
a partial function f, from a subset of w to w such that a, N ag is not empty iff n
is in the domain of f, and, for n in the domain of f,, fy(n) is the largest element of
ay Nag,. Similarly, we may assume that b, N ag, is cither empty or infinite for
each n not in the domain of f," and, for other , f,/(n) is the largest value of ag, N
by. In the above proof, we found a function A which bounded all of the f, and fY'
for y < a. However, it was not necessary to have a total function; it would have
sufficed to pass to an infinite subset of {E,: n € w}. We would say that {a,:
y <a} is not totally unbounded with respect to {ag,: n € w} as per the following
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definition.

DEFINITION 2.2: (1) Given B and A, infinite families of subsets of w, say
that A is totally unbounded with respect to B, if for each infinite B'C B and each
h €B'w, there is an a € A such that a N U{b - h(b) : b € B’} is infinite.

(2) A maximal almost disjoint family A is totally mad if for each infinite B
C A no subset of A of cardinality less than c is totally unbounded with respect
to B.

QUESTION 1: (1) Is there a totally mad family?
(2) Does b = w; imply there is a totally mad family?

REMARK 2.1: A totally mad family has a refinement which is a completely
separable mad family. A mad family is said to be completely separable (intro-
duced by Hechler and Shelah [5], [7]) if each X C w which meets infinitely many
in an infinite set will actually contain one of them. The existence of a completely
separable mad family has been established under various cardinal hypotheses [3],
but it is not known to follow from b = wy <s. Our hope is that that there is a mod-
ification of Shelah’s model of b < s (discussed later in the paper) in which every
compact separable sequential space will have sequential order at most 2 and that
in all likelihood there will be no totally mad family.

The next result will be an integral tool in our construction of a totally mad
family (Proposition 2.6).

PROPOSITION 2.3:  Let R ={R,: n € w} be a partition of w into infinite parts.
Then there is a family D such that;
(1) RUD isamad family on w;
(2) every D €D is a transversal of R, i.e, [D NR,|=1 for every n € w;
(3) whenever B € [R]” and Dy € [D]*F, then there is an infinite B’ C B and
a function g: B’ — w such that the set D N U{B\g(B) : B € B'} is finite for
every D € D,
Therefore, the family R U D is a mad family in which no subset of D with car-
dinality less than c is totally unbounded with respect to R.

Proof: By [2], we may fix T, a tree n-base for [w]® of height at most b (i.e.,
T C[w]® forms a tree under the ordering of reverse inclusion mod finite and T~
is dense in [w]® with respect to this ordering). It is easily arranged that T is dense
in [0]® with respect to the usual reverse inclusion ordering since we can just en-
sure that for each TE T and each n €, there isa ' €T with 7' C T-n. For X
C o, let domX denote the set {n € w: X N R, = J}. For every X C w with domX
infinite, choose some T(X) €T so that T(X) Cdom X and T(X) = T(X"), whenever
X = X'. This is clearly possible since for every infinite M C o, the set of all T €
T with T C M is of size c.

Enumerate [w]® as {X,: a <c} and proceed by transfinite induction. Suppose
we have found {Dg: B <a} for some a <c. If X, is almost disjoint with all R,, n
€ w, and all Dﬁ, B < a, then let D be a subset of X, which is a transversal of R
and such that dom D = T(X,), otherwise let D, =@. Let D ={D,: a<c, Dy = J}.

The conditions (1) and (2) immediately follow from the inductive construc-
tion. In order to verify (3), let Dy € [D]< € and B € [R]®. There is some TpE T
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such that for every n € Ty, R, € B. There are ¢ almost disjoint members of T, all
contained in Ty and |Dy| < ¢; hence, there is some T & Tg, T € T such that the
inclusion dom D C* T holds for no D € Dy Since T is a tree under *2 and since
domD € T for every D € D, we have, for D € Dy, that either T Ndom D is finite
orTC*domD. ForD€E Dy, letfpE T be defined by fp(n) =0, if n €& domD, and
by fp(n) =k, if n €T and {k} =D NR,,. Since the height of T is less or equal to
b, there is some f€ Ty with f *> fp for all D € Dy such that domD *2 T. Now, it
remains to put B’ = {R,: n €T}, define g(R,) = f(n) and (3) holds with this choice
of B’ and g.

COROLLARY 2.4: Let a € w; be a limit ordinal, let C = {Cg: B <o} be a de-
creasing mod finite chain of subsets of w. Then there is a family D(C) C [w]®
such that:

(1) for every D € D(C) and every B <a, D C* Cp;

(2) D(C) is an almost disjoint family;

(3) D(C) is maximal with respect to (1) and (2); .

(4) if B is an almost disjoint family of sets such that for every B € B there is

some B < a with B C* (Cﬁ\Cﬁ +1) and if Dy € [D(C)]* ¢, then there is
some infinite B’ C B and a function g: B'— w such that the set

pnU{B\g®B): BE B}
is finite for every D € Dy,

Proof: Choose an increasing sequence {(a,: n € w) cofinal in a. Let Ry = w -
Cyq and for n > 0 define R, = Co\(Copa1Y Ok < nRe)- Apply Proposition 2.3 to
get D = D(C). (1), (2), and (3) of the corollary follow from (1) and (2) of Prop-
osition 2.3. If there is some B < & such that the set B'= {B € B: BN g is finite}
is infinite, put g to be the constant 0 and (4) follows. Otherwise there is some in-
finite set B’ such that the set { <a: B C* Cg, B € B'} is cofinal in a and more-
over, for every n € w, there is at most one B € B’ with B C*R,,. Now, Proposition
2.3 easily applies. O

LEMMA 2.5: Let R={R,: n € o} be a partition of w with each R,, infinite,
let Y € [w]® be almost disjoint with all R,.. Then there is a family H={H,:0<
a < b} such that:

(1) H, , 1 (for each o < b) is an infinite set, which is almost disjoint with Ry,

for each n € w;
(2) H, (for each limit @ < b) is a decreasing mod finite chain, Hy = {Ca,p:
B<a} with each Cq g almost disjoint with R, for each n < w;

(3) if a<p<b, then H, , 1 NHg ., 1 is finite;

(4) if a<Bsy<d<b,then Cg o N Cpyis finite;

(5) if a<P<y<borP<ysa<b,then Hy, 1 NC,gis finite;

(6) whenever X € [w]® is almost disjoint with each R, (n € w), then either X N

H, , 1 is infinite for some o < b or there is some limit o < b such that X N
Co, is infinite for all B <o
(7) [YNH{|{=o.

Proof: Enumerate R, = {r(n,k): k € 0} and fix a family of strictly increasing
functions {f,: a <b} C "o which is unbounded with respect to < * and, moreover,
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fo <*fgfora <P <b. In addition, assume that {n: Y N{r(n, k): k < fi(n)} = 3}
is infinite. Let Hy={r(n, k): n€w, k€ w, k<fi(n)}; Hy , 1 ={r(n, k): n € o,
k€w, fo(n) sk <fy ,1(n)} for 0 <a <b, and finally let Co g = {r(n,k): n €, k
€ o, fa(n) sk <fo(n)} for < <b, o limit.

It is straightforward to verify that, since for all a < <b, f,(n) < fg(n) holds for
almost all n € w, (1) up to (5) are satisfied. (6) holds because the family {f,: a <
b} is unbounded and all the functions f, are strictly increasing. By the choice of
fi, (M holds. QO

PROPOSITON 2.6: (b =s=w; or b=c). There is a totally mad family on .

Proof: Of course the statement follows trivially from b = ¢, so we assume b
=s = w;. Fix a splitting family {Sg: & <} and an unbounded family of functions
{fa: @ <b} C o satisfying: for a <P <b, f, <* fg, moreover, lim fg(n) - fo(n) =
o and fy = id.
We shall construct simultaneously, for § <y, a family W C [0]® consisting
of decreasing mod finite chains of countable limit length, a mad family A¢ on
and an almost disjoint family Dy, with the aim to get U ., Dy totally mad.
The starting point is quite simple: let Dg={D,: n € ®} be an arbitrary partition
of w with each D, infinite, let M)y consist of just one chain C, where C =
{o\U,.,Dy: n € w} and let Ag be the union of Dy U D(C), where D(C) is the
family described in Corollary 2.4.
Let & < w; and suppose that all D, M, and A, are known for n} <&. The in-
duction assumptions are as follows:
(2) for every n <C <&, Agrefines A, and UE <tDe C Ay
(b) for every M <§ <& and for every chain C €M), there is some C' € M
with C C C' and C' is an end-extension of C;

(c) for every n<E, forevery D € U;; <Dy and for every chain C €M, there
is some C € C with D N C finite, similarly, for two distinct chains C, C’' €
)‘Dn there is C € C and C' € C’ with C N C’ finite;

(d) for every n <& and for every chain C €M), there is a family D(C) chosen
as in Corollary 2.4, such that for each A E.’An either there is a C € C such
that A N C is finite, or there is a D € D(C) such that A C D;

(e) for every 1 <& and for every infinite X C o, either |X N D|= w for some
De UC < n Dy or there is a chain C €M, such that [X N C| = w for all

CeC;
(f) if n+1 <&, then for every C €M, , { there is some C € C with C C S, or
CNS,=1;

(g) ifn+1<Eand CEM,, then for every infinite B C D, , ; such that, for
each DE B, D C* C forall CEC, there isa C'&€M, . ; and a descending
mod finite sequence {C,: n € o} C (' such that, for each n, there is a
B € B which is contained mod finite in C,, - C,, { while if n <& is a limit
ordinal, then D, is empty.

If € < w; is limit, let ¢ consist of all chains C such that for every n <& there
is some Cy €M, with C = Un <& Ce. For every C €My, let D(C) be the almost
disjoint family resulting from the application of Corollary 2.4 to C. Then B de-
fined as Un <Dy U U{D(C): C €M¢} is a maximal almost disjoint family on
w; let Ag be an arbitrary mad family on o which refines B as well as all A, n<&.
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Since & < wy, such an Ag is easy to find. Finally, put D=2

For a successor ordinal € =1 + 1, we proceed more carefully. First, denote by
VY the family of all Y € [w]® such that the set {C EM,;: for every CEC, [y nc|
=} is of size c. Then for every Y € Y select one chain C(Y) €M, such that Y
meets all C € C(Y) in an infinite set and do it so that distinct ¥’s are paired to
distinct C(Y)’s.

Consider C €M, There is some a < w; such that C ={Cp: B<a} and in the
previous induction step some cofinal sequence (o, : n € w) was selected in order
to find D(C) using Corollary 2.4. Let R, = Ca,,\(Ca,, Y U, < «Ry) and apply
Lemma 2.5 to the family R = {R,, : n € w} to select the family {H : o <b}. Since
all members of D(C) are transversals of R and since limfy , 1(n) — fu(n) =, ev-
ery H, , { meets uncountably many D’s from D(C), hence, also uncountably
many A’s from A,. For every o < b ( = wy) choose a countable family {4,(C, o):
n € w} CA, such that A,(C,a) N H, , 1 is infinite for every n, and put D,(C, o)
= {AC,a) NHy , 1: n €Ew}. In the case that C = C(Y), just one modification is
necessary: we shall guarantee that Do(C, 1) meets Y in an infinite set. This is al-
ways possible with the aid of Lemma 2.5(7), and due to the fact that A, is a mad
family. Let Dy be the set of all infinite members of {D,(C, &) NSy: n € v,
a€ay,CEM} U{DAC,0)-Sy: n€Ew, a€wy, CEMy}

If C €N, then M(C) will denote the family, which we now define, of all
chains to which C extends. We now take care of condition (f). For a.+1 <y, if all
sets Hy 1 ﬂSn\Uk<,,Dk(C,a) are infinite, then C U {Hy 1 N Sy\Ug<nDi(C, @):
n € w} belongs to Wg(C). Similarly, if all sets Hg , 1 N (m\S.q)\Lj,c <nD(C, @) are
infinite, then C U {H, , 1 N (w\Sn)\Uk <nDKC, @): n € w} belongs to M(C) as
well. If o < w; is limit, then C U {H} is a chain, however, we again take the mem-
ber S, from the splitting family into account: C U {Ca, BN Sy: f<a} and C U
{Ca’ﬁ\Sn: B < o} will be members of W ¢(C), provided they do not contain finite
sets. Clearly, for each 0 < o < oy, at least one of the chains defined above is put
into MW(C). Set W =U {M(O): CEMW,}.

It remains to define Ag. Similar to the limit step, let D(C) be the almost dis-
joint family resulting from the application of Corollary 2.4 to the chain C. Then
B= UnsEDn uU {D©y: € €M} is a mad family and it remains to define Ag
={ANB:A€A,,BEB, |A NB|=w}.

This completes the inductive definitions. The verification of the induction as-
sumptions is straightforward and will be left to the reader.

We have to verify that D = UE<m1DE is totally mad. The almost disjointness
of D should be clear, so let us first prove its maximality. Let Y € [0]® be arbi-
trary, assume that £(0) < w; is the first ordinal such that both sets Y M Sg(gy and
Y\SE(O) are infinite. If Y does not meet any D € UnSE(O)Dn in an infinite set, then
by (e), there is some chain C in W such that Y N C is infinite for all C € C, how-
ever, by (f), there must be two chains Cgand Cy in )¢ with this property. Choose
two infinite subsets Y and ¥; of Y such that Yo C* C forall C € Coand Y, C* C
for all C € Cy. Let E(1) be maximum of the first £ with both S¢ 1 Yy and YO\SQ
infinite and of the first m with both §,;, MY} and YI\S" infinite. If Y still meets no
Dbe Un <t1)yDn in an infinite set, then Yy is compatible with two chains Cgg, Coy
emg(l), both extending Cg, and similarly for Y(1). Proceeding further, if the
branching continues, we finally arrive at a limit & =sup{§(n): n € w}. Since Y




DOW: ON MAD FAMILIES AND SEQUENTIAL ORDER 85

meets all members from ¢ chains from mn, our construction ensures that YE'Y
at the (§ + 1)-st step of the induction and so Y N D is infinite for some D € Dy .
Since Y was arbitrary, we conclude that D is a mad family.

Let B € [D]®, E € [D]* € be two disjoint subsets of D. Then there is some
infinite {B,: n € @} C B, some E < and a chain C = {Cg: p<a} €Mgsuch
that for some increasing sequence of ordinals (B,: n € w) cofinal in a, B, C *
Cﬁ"\Cﬁn+ 1- To see this, let 8 be minimal such that B N Un <6 Dy is infinite;
hence, we may assume that B C Un <8Dy- 1f 8=0 then it is clear that we may take
C to be the unique member of W)g. Otherwise, recursively choose a sequence Cn
€M, so that B <n implies Cg C Cy €M, and there are infinitely many B € B
which are contained mod finite in every member of Cn. Clearly there is some E< d
for which we cannot choose Cy. If §=f + 1 is a successor, then we can apply in-
ductive hypothesis (g) to find the required C € Mg and sequence (B,: n € w). If
on the other hand, € is a limit, then C = Un <ECn E?Y)E is the desired chain and
it should be clear, by inductive hypotheses (a) and (d), that there is a sequence
(B,: n € w) as required (i.e., there is an infinite sequence (B,: n € w) C B and
an increasing sequence {n,: n € o) C E such that B, is almost contained in
every member of Cn’l but is almost disjoint from some member of C“n* -

Having found C, let o be the length of C and let (&, : n € w) be the increasing
sequence that was used in the application of Corollary 2.4 when defining D(C).
Choose an infinite subset By of B so that for each n € w, there is at most one
B EBjsuch that B C* Cy, - Cq, ;- Now, by construction, we have that for every
E € F, either there is an n such that E N Cy, is finite or there is a D € D(C) such
that E C* D (by hypotheses (a%,and (d)). Therefore, by Lemma 2.3, there is a suit-
able B' C B and function 2 € ¥ o witnessing that Z is not totally unbounded with
respect to B. The proposition is proved. 0

3. SHELAH’S b <a POSET

For the reader’s convenience we will reproduce the results from [9] that we
will need in the next section.

DEFINITION 3.1.1: Let K, be the family of pairs (s, k), s a hereditarily finite
set, h a partial function from P(s) to n + 1 such that

(1) h(s)=n

(2) ifh(f) =t +1 (¢ C s), t=t1 U tpthen h(t)) = Lor k(ty) = L.

DEFINITION 3.1.2: LetK,, = Uy, Ky and K = U,K,.

One example of a member of (s,h) € K, is to take s to be the set of integers
[0,2"] and to define h(f) =logy(|t]) fort C s.

DEFINITION 3.2: An ordering on K is defined in two steps:
(1) Suppose (s,h) and (s', k") are members of K, we say that (s,h) = 4(s',h')
(we think of (s, k) as refining (s', £")) if:
(a) s = s
(b) dom(k) C dom (k);
(c) for some integer i, h(u) =max{0,h'(u) - i} for all u € dom (k).
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@) (s,h) < (s',h") if for some 5 € dom ', (s,h) = (5, k' [P()).
(3) (s, h) <(s', b") if for some (5, k),

(s, B) <%Gs, B) s°(s', ')

We next define a set L consisting of finite trees of members of K whose max-
imal elements will be integers. These will form the component pieces of the con-
ditions of our poset and they represent a certain measure of how likely it is that
the finite sets of integers will be contained in the generic filter.

DEFINITION 3.3: L is the union of all the L, where for each n, L, is the family
of pairs (S, H) such that:
(1) S is a finite tree with a root;
(2) int(S) is the set of maximal nodes of S and will be a subset of w, the set of
nonmaximal nodes of S will be denoted in(S) and we will assume that
in(S) is disjoint from w;
(3) H is a function whose domain is in(S) and let H, denote H(x) for x €
in(S);
(4) For x €in(S), (Sucg(x), Hy) €K, , where Sucg(x) is the set of immediate
successors of x in §.
If (S, H) €L, then lev(S, H) = max {n: (S, H) EL,}.

The ordering on K will lift naturally to an ordering on L as follows.

DEFINITION 3.4: We say that (8%, H®) = (S, H") if SO C %, they have the
same root, in(S?) = 59 N in(S!) and, for every x € in(5%), (Sucgo(x), HY% =<
(Sucs1(x), Hy').

If t €L, we use (S%, H®) to denote its components. For (S, H) €L and x €in(S),
let (S, H)I¥! = (sP, HI's™ly where skl = {y€S:x s yin S}. An important tool
in the proofs is to define half(S, H) for (S, H) in L,, where half(S, H) =(S’, H') is
defined by 8’ =S, dom(H,") = {A €dom(H,): H,(A) =n/2} and H,'(A) = [ H,(A)
- n/2] (the greatest integer function). The usefulness is in the following.

Facr1: Ift€L,and ' = half(¢), then ¢ (canonically obtained from ¢ and 1)
is_such that 7 = ¢, int(¢) = int(¢), and t € L{y/y)- Define ¢ as follows: §* = §' and
H' = H' | $* in the sense that for each x €', H,' = H’; [ P(Sucgt(x)).

An important fact for getting the splitting number to go up, as well as in some
of the proofs of the properties of the poset we will define is the following.

FACT2: 1f (S, H)ELy,, and int(S) = AgU Ay, then there is (S', H') = (S, H)
such that int(S") C Agor int(S") CAqand (8", H) EL,

DEFINITION 3.5: The forcing-notion Q is defined as follows:

(1) pEQifp = (W,T) where W is a finite subset of and T is a countably
infinite set of pairwise disjoint members of L such that T — L, is finite for
each n. Let int(p) and int(T) denote the set U {int(s): t € T}.

(2) Giventy = (Sy, Hy), ..., ty = (S, Hy) all from L such that S;NS;= @ for
i=j,tis built from tq, ..., tif: There are incomparable nodes ay, ..., a; of
S such that every node of S is comparable with one of the a; and such that
(S, Ml = (S, Hyfori=1, ..., k.
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3) W,T) s (W, T)it W CWCW U int(T") and letting T' = {¢'g, ', ...}
and T = {¢g, ¢y, ...}, there are ¢; s ¢'; for each i and pairwise disjoint finite

subsets, Bg, By, ..., of {t;: i € ®} such that, for each m € w, t,, is built
from B,,. It follows that for each n only finitely many of the B,’s will
meet L -L,.

(4) We also demand that for (W,T) €Q and ¢,¢' €T, max W < min (int(¢)) and
either max (int(¢)) < min(int(¢')) or vice-versa.

It is natural to think of W as the root of the condition (W, T) € Q and root pre-
serving extensions will be important. The reader familiar with Axiom A forcings
will observe that Q is an Axiom A poset and there is a natural choice for <, sim-
ilar to the <g defined next.

DEFINITION 3.6: For p € Q we use (WP, TP) and p < g will mean that p < g
and WP = W9, In addition, we will use {t,7: n € 0} to denote T” listed so that
max (int(¢,)) is increasing. If p € Q, n € w, and W C 1 + max (int(¢,”)) then py/
denotes the condition (W, {¢/ : { > n}).

DEFINITION 3.7: For a proper ideal I C P(w) (which includes all finite sets)
let Q[I] denote the set of g € Q such that for each A € I, there are infinitely many
t € T9 such that int(¢) N A is empty.

PROPOSITION 3.8: (1) p €Q and 1, are Q-names of ordinals, then there is a
q <o p, such that for each k< n <o and each W C max[int(¢,9)] + 1, gy forces
a value on T, iff some < extension of gy forces a value on 1.

(2) Q is proper.

(3) kg “{n: (3p €EGp) [ n € WP]} is an infinite subset of ® which P(w)Y does
not split.”

Proof: Parts (1) and (2) are proven below for Q[I], the more difficult case,
so we will not prove them here. Item (3) follows from Fact 2 above. (O

PROPOSITION 3.9:  Let Cm] denote the poset for adding w; Cohen reals. In
vCa1 the following hold for an ideal J € V with [w]*® C I C P(w).

(1) 1If peQ[I] and t,, are Q[I]-names of ordinals then there is a < extension
g of p such that: ¢ € Q[I], and for each k¥ < n < w and each W C
max [int(¢,)] + 1, gy" forces a value on T, iff some <j extension of gy
forces a value on T,.

(2) Q[I]is proper.

(3) ko “An: B EGogp n € WP} is an infinite subset of w which is
almost disjoint from every A €1.”

Proof: (1) Let A be a large enough regular cardinal and let M be a countable
elementary submodel of (H(XA), € V N H(N)) to which all of I, the set of w; many
Cohen reals given by Cy,, Q[I], p, and T, for each n € w, all belong. Let & =
M Nw;. Define by induction on n <w, g" €Q[I] NM, ¢, and k, < o such that:

(1) each ¢"is a < extension of p;

(2) q" <q'forl<nandif WCk, m<n+1andsome <qextension of (W, T9")

forces a value on T, then (W,T7") does s0;

(3) k,>k and k, > max(int(t,)) for { <n;

(4) every [ €int(q") is greater than k,;
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) t,€ 79" and lev(t,) > n and min(int(z,)) is greater than k.

To do so, first choose k,, then g”, and at last ¢, We want in the end to let T4
= {t,: n <w}. One point is missing. Why does g = (WP, T?) belong to Q[I] (not
just to @)? The answer is that it may not but we may choose a real r € “o which
is Cohen generic over V[M] and choose ¢, to be the r(n)-th possible one according
to some fixed well-ordering from V of the hereditarily finite sets (i.e., all possible
#’s). Then for any A € I there are infinitely many such ¢, for which int(¢,) NA =
&, hence, there will be infinitely many » such that int(z,) NA is empty.

Now the proof of (2) is quite standard. Let M etc. be as above. Recall that from
[8], it suffices to show that there is a condition g < p such that for eacht EM
which is a Q[I]-name of an ordinal, g forces that t takes on a value from M. So
in condition (1) we may take {t,: n € o} to be the list of all Q[I]-names of or-
dinals which are members of M. Let » be any extension of g which forces a value
on some T Let n > k be chosen so that W" C max [int(¢,)] + 1. Clearly (W",{;:
{>n}) has a <g-extension (namely r) which forces a value on 1. Therefore, qv’;,,
forces a value on t; and, since qwr" is a member of M, this value is in M.

Statement (3) follows trivially from the fact that for each A €], the set {g E
Q[I]: int(T9) NA =@} is dense in Q[I]. Q)

We will also need the fact that Q is almost ®w-bounding — this is certainly the
property of Q which is the most difficult to obtain (and which does not hold for
Q[I] for many choices of I). This proof we will need to reproduce carefully as
we will need to generalize it in the next section. We refer the reader to [8] for the
basic properties of almost “w-bounding forcings: e.g., that a countable support
iteration of almost ®w-bounding proper posets is itself weakly bounding. We give
the definitions below.

'LEMMA 3.10: Let (&, T)EQ and let W be a family of finite subsets of int (T)
so that

for every (@,T') < (@,T), there isa WEW with W Cint(T"). 3.1

Then for each k € o, there is a t € L, appearing in some (&, T") < (2, T) such that,
for every t' = t, there isa WE W with WC int(¢).

Proof: Let T be enumerated as {¢,: n € w} and assume with no loss of gen-
erality that ‘W is closed upwards. We first do the case k =1. The desired tree ¢
will be built from a set {¢, : n Eu} where ¢, = t, for each n. For this we need a
finite subset u of  together with a partial function H : P(u) — @ such that H(u)
=1 and H(u;) = 0 or H(uy) =0 whenever u =u; U u, and whenever H(v) = 0, then
for every choice , < ¢,/ (n €v) the set U, e, int(t,) belongs to W.

This suggests defining a partial function H : [0]* ® — o by the following con-
ditions:

1. u € dom (H) iff for every [ € u the tree half(zy) belongs to L, and for all
possible choices ¢,' = half(t)) ({ € u) the set UtEu int(¢,") belongs to W,
and

2. H(u) =m + 1 iff whenever u = u; U uj one has H(u{) = mor H(up) = m.
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It is assumed tacitly that H(x) is always chosen as large as possible so that for
example, H(u) =0 implies there are v, w C u such thatu =v Uw but v, w & dom (H).
The need to use half(¢;) will become apparent shortly.

Once we have u with H(x) = 1 we define ¢ = (S', H®) by taking u as the root of
the tree S and putting the trees half(f)) as its immediate successors. The function
H,!is taken to be H on the successors of u and the appropriate {0 higher up.
This defines an element of Ly that is built using trees that were below elements
of T and as such it appears in a condition (&, T") below (&, T).

Now if t' < ¢ then the set of successors of u that are in ¢’ forms a set 4’ that is
in dom(H") and hence in dom (H) so that we have H(«') = 0. But ¢' is built using
t/ < half(t)) with LEu', so int(¢) = UlEu’int(tl’) belongs to W.

We show that there is such a u in three stages.

Stage A: There is n such that if ¢/ <half(z;) is chosen for each { < n, then U,<,,
int(¢/) € W. This is because, otherwise, the family of all {¢;': [ <n) such that n <o,
t/< half(¢;) for [ <n and Ut <nint(t) & W forms an w-tree with finite branching.
By Konig’s lemma there is an infinite branch, say (¢, : n € ®). But now there is
a T’ such that (&, T") < (&, T) and int(T") = U,,Em int(¢,"). The only problem with
taking 7' C {t, : n € w} is that {lev(¢,) : n € w} may be bounded. However, by
Fact 1, we can replace each ¢, by some ¢, where the level of ¢, is at least one-half
of that of ¢,. It follows that ' = {¢,: n € w} is a suitable choice. Of course, the
hypothesis on ‘W contradicts the assumption that {¢,’ : n € ) is a branch through
the above tree — hence we finish. Note that if A C @ is such that {n : int(z;) NA
= @} is infinite, then this is true of T’ as well. Therefore, this stage generalizes

directly for Q[1].

Stage B: Repeated applications of Stage A will give 0 =n(0) <n(1) <., such
that for every i and choice of t/ < half(y)) (n(i) = ! <n(i +1)), the set U{int(tt'):
n(i) =< n(i+1)}is an element of W. Note that if i is large enough then half(¢;)
belongs to Lq for all { = n(i), so that [n(i), n(i + 1)) € dom(H) for all but finitely
many i.

Stage C: Similarly we can produce a sequence 0 =m(0) <m(1) <--- such that
for every j € w and function A : fm(j),m(j + 1)) — o with A(i) € [n(i), n(i+ 1)) for
all i € dom(k) and for every choice £y’ < half(f;), the set U{int(th(,-)'): m(j) =
i <m(j+1)} belongs to W. Let us remark, however, that if A is some subset of o
for which there are infinitely many » such that int(¢,) is disjoint from A, then this
may not be true for a subsequence of t,’s. Therefore, this stage does not easily
generalize to Q[I].

Now, take j large enough so that [n(i), n(i+ 1)) € dom(H) for i = m(j) and con-
sider u = [n(m(j)), n(m(j + 1)) ); we claim that H(u) = 1. Indeed, let v Cu. If there
is i such that [n(i), n(i + 1)) C v, then v € dom(H), otherwise we may define h :
[m(j), m(j + 1)) = u with (i) € [n(i), n(i + 1))\v for all i. It then follows, by Stage
C, that u\v € dom(H).

Now observe that the above arguments apply to all (&, T") < (&, T) and hence
that the family "W, consisting of those W that contain sets of the form
ULEuint(tt’), where H(u) = 1 and ¢ = half(#) for all {, also satisfies (3.1). We may
define its associated function H{. We note that H(u) = 0 implies H(«) = 1 and so
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Hiy(u) = 1 implies H(u) = 2. Using high enough # we can then find our required
tE L,. An obvious induction completes the proof. 0O

We can now reformulate this lemma in terms of forcing.

LEMMA 3.11: Fix p €Q, a sequence {t,,: n € v} of Q-names of ordinals, and
letg = (I/I_’q, {t,: n € w}) be as in Proposition 3.8, then there is an r <g g such that
if T = {t,: n € w} the following holds.

Foreveryn<w, WC [O, max (int(¢,)) + 1) and t,\1 = t,,1, there (3.2)
is W' Cint(¢,,;) such that (WU W', {;:{ > n+1}) forces a
value on t,(m = n).

Proof: Choose, inductively t, using Lemma 3.10 as follows. Having chosen
t,_1, let m be large enough so that max [int(Z, _ 1)] < min[int(z,)]. Let W be
the set of all W C [min[int(¢,)], @) such that for each W' with wWiCw C
max [int(¢,_ )] + 1 there isan r = (W', {tj: m= [< w}) such that W' -W' C W
and r forces a value on each of 1 for k= n. Clearly ‘W satisfies the conditions in
Lemma 3.10. Apply Lemma 3.10 to {¢; : { = m} to obtain a condition t,€L, 0O

Recall that a poset Q is almost “w-bounding if for every Q-name of a function
from w to w and p € Q, there is some g € ®w such that for every infinite A C o,
there is a condition p’ < p such that

pro{n€A: fn)< g(n)} is infinite.

A poset is weakly bounding if every unbounded family of functions from w to w
remains unbounded in the extension.

PROPOSITION 3.12:  The forcing Q is almost “w-bounding.

Proof: Let fbe a Q-name of a function from wto w and let p € Q. For each
n, let T, = f(n) and obtain » = (W’,T") as in Lemma 3.11. Let g: o —> o be the
function where g(n) is the largest k such that for some W C max (int( ¢, ))+1,
the condition (W,{t,: { > n + 1} forces that f(n) = k. Given any infinite A C w,
let py = (WP {t},1: nEA}). Let ¥ <p4 and let n EA be such that some F< ¢, is
used in building some member of T". Of course W is one of the subsets used in
defining g(n) and by Lemma 3.8, it follows that the value ¥ forces on T, is the
same as that forced by (W7, {t;": { > n +1}). This completes the proof. O

4. THE MODIFICATION OF Q[I]

One thing that was not proven in the previous sections is that Q[I] is almost
®y-bounding. Indeed, in general, we essentially only expect Cy *Q[I] to be al-
most “w-bounding and not even for all ideals I.In [9], Shelah shows that this is
the case when I is the ideal generated by an almost disjoint family of subsets of
. We can describe this another way. Consider the usual W-space (so-called) gen-
erated by an almost disjoint family A, i.e., the space is ® U {x4:A€EA}anda
neighborhood base for x4 is {{x4} U A-n:n€ w}. Let X be the one-point com-
pactification of this space and let x denote the new point added. What we want to
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remark is that X is a compact sequential space and that I isequalto I, ={ACw:
x &cly(A)}. In general, if X is a sequential space which is a compactification of
owand xEX, let Iy , = {A Cw:x&clyA)}. We intend to show in this section
that there is a forcing P which is a countable support iteration of proper almost
“w-bounding forcings so that Q[Iy ,] is almost “w-bounding in vP (and so can
be used in an iteration which will be weakly bounding).

We begin with the following. As usual, if X is a compact space and P is any
forcing notion, then X generates canonically a compact space in the extension vP
as follows: assume that X is a subset of [0, 1]* for x = w(X). In the extension, we
let X refer to the closure of X" in [0,1]%.

LEMMA 4.1: (CH) Let X be a compactification of w and let Q,, be the count-
able support w¢-length iteration in which Q is the iterand for each o < ;. Let P
= Qu,* Cyy- In VP, if (@, {t,: n € ®} ) € Q then, there is an infinite J C o and a
sequence t < t, for n €J so that (3, {¢,/: n €J}) €Q and there is an x EX so
that U{mt(t '} : n €J} converges to x in the space X.

Proof: 1t should be clear that we may assume that 8 < wq is large enough so
that {¢,: n € o} is a member of the model V25" Cs where, of course, Qj is the
iteration of 8 copies of Q and Cj is the obvious countable subposet of Cﬂ’l‘ Work-
ing in the model V2 we can inductively choose t,/ in such a way that for each
forcing condition p € Cy there are infinitely many n such that there is a p’ <p
which forces ¢, to equal ¢, and such that (&, {¢,': n €Ew}) is a member of Q (i.e.,
t, €L - L, for at most finitely many m). Now find a coordinate o > & so that
(2, {t,': n €Ew}) is a member of G(w) (i.c., the generic subset of @ given by the
a-th coordinate in Q). It is easy to check that, by genericity, J; = {n:
@3t)t, <t, and (3q EG(a)) mt(t ) C W1} is infinite. In addition we may assume
(by passing to a subset) that lev(z,) diverges to infinity. For each n €Jy, fix t,

4 such that there is a g € G(t) with int(¢,) C W4. Finally, by the inductive con-
structlon of the 1,,"’s, there is an infinite set J CJy in VP such that ¢, = ¢, for each
n €J. This is our desired set J. Note that (@, {t,: n&€J})is a member of Q. The
only thing remaining is to see that U{mt(t,,) n € o} converges to some member
of X. This, however, follows from the fact (Lemma 3.8) that {m : (g EG(a)) m
€ W1} is not split by any basic open subset of X. 0

The key property that seems to make this go through is the following.

DEFINITION 4.2: A poset P = Q[lx ,] will be said to have the madf property
if for each p € P with T? = {t,: n € w} there are pairwise disjoint subsets of w,
{J,: n €0} and a sequence {¢,': n € w} with ¢,/ < ¢, for each n, so that for each
B C o such that B NJ,, is infinite for each n, (3, {t',: n EB}) is a member of P.

LEMMA 4.3:  Suppose that X is a compactification of o with countable tight-
ness and suppose that for each p €Q, there isa y €EX and p' < p such that int(T?)
converges to y. Then Q[Iy ] has the madf property for each x €EX.

Proof: Let S be the set of y €X such that there is a J, C w such that there is
a T, s Tj, for which int(T,) converges to y (where Ty = {t,: n €J}). Note that
by the hypothesis on X, every infinite subset of w contains some such J. Since p&
Q[Ix ], xis in the closure of §. Since X has countable tightness, there is a count-
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able subset {s,: n € w} C S which has x as a limit point. Note that if x €S, then
we may stop since it would follow that, below (D, T,), the posets Q[ Iy ,] and Q
are the same.

For each n, fix J;, and {tm": m €J,} so that t." = ty for each m, the set
U{int(t,") : m €J,,} converges to s, and (@, {tn": m€J}) is in Q. Since we
may shrink J; , we may assume that {J;, : n € 0} are pairwise disjoint (countable
families of infinite sets have disjoint refinements). With no loss of generality
(and it isn’t important) we may assume that U,,Eszn is all of w. For each m €w,
there is a unique n, such that m € J , define t,, to be t,". Observe that (3, {t, :
m € w}) is a member of Q[ Iy ,]. Now suppose B Caw is such that B NJg, is infinite
for each n, then (3, {t'y, : m € B}) is a member of Q[Ix ,]. To see this, fix any A
€ Iy ,. Since x & cly(A), there is an n such that s, € cly(A). It follows that the
intersection of A with U{int(tm”) :mEJg, } is finite. Therefore, there are infinite-
ly many members, m, of B NJ such that int(¢,,) NA is empty. Q

LEMMA 4.4:  Suppose that X is a compactification of w and suppose thatx€X
is such that Q[T ,] has the madf property. Letp =(3, T) €Q[Ix ,] and suppose
that W is a set of finite subsets of @ such that for each (&, T") < (&, T), there isa
WE W with W Cint(T"). Then, for every k€ w, there is a ¢ €L, appearing in some
(@,T") <(3,T) such that, for every ¢' < ¢, there isa WeE W with W Cint(¢').

Proof: LetT={t,: n € w} and proceed as in Lemma 3.10. As mentioned in
the proof of Lemma 3.10, the proofs of Stage A and Stage B are unchanged. We
generalize the idea from [9], where this is shown for the case X is the one-point
compactification of a W-space, to prove Stage C. The rest of the proof is as in
Lemma 3.10.

Fix the sequences {¢,' : n €} and {J,: n Ew} as in Definition 4.2. The rest
of the proof is virtually the same as in [9].

In Stage A, we may assume that n(i + 1) is chosen large enough so that [n(i),
n(i + 1)) NJy is not empty for each k = n(i). Now fix a function ¢ from w to w so
that ¢(i) = n(i) for each i and so that ¢"1(n) is infinite for each n (¢ can be defined
by induction).

Stage C: We wish to define the sequence m(f) so that for each function h with
domain [m(t), m(f + 1)) and with k(i) € [n(i), n(i + 1)} NJ g for each relevant i,
and for each selection of ;) = half(t;(;)), the set U int (£yp) is in ‘W. As in the
proof of Stage A in Lemma 3.10, the idea is to note that if m({ + 1) cannot be cho-
sen, then we obtain an infinite sequence {f,,(,-) :m(l) s i <w}such that k(i) € [n(i),
n(i+ 1)) N J g for each i and so that #;;) = half(ty(;). The role of the half(t,')’s
is the same in that they guarantee that we can find a suitable (&,T) = (2,T) in
Q which does not contain a member of ' W. However we must ensure that this
(2,T) is a member of Q[ Iy ,] to obtain a contradiction. We do obtain such a con-
tradiction, since B, the range of h, meets each J,, in an infinite set. Therefore, just
as above, there are, for each A € Iy , infinitely many i so that ?h(,) misses A.

COROLLARY 4.5: (CH) If X is a compactification of w and if, in Vcwl, xisa
member of X such that Q[Iy ,] has the madf property, then in VCeor, QlIy,]is
almost “w-bounding.
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Proof: We workin vCo1 and let f bea Q[Ix ,]-name of an increasing func-
tion from w to o. Fix & < w, large enough so that f€ V&6, We may invoke Lem-
mas 4.1 and 4.4, to find a sequence {¢,: n € w} just as we did in Lemma 3.11
except that we may use a real which is Cohen generic over V-6 to choose the next
value for £, from _among all those satisfying the requirements. This genericity will
ensure that (&,{t,: n € 0}) € Q[Iy ,]. We define a g similar to that defined in
Lemma 3.12. First of all, since there is no harm in refining the sequence of z,’s,
we may assume that there are pairwise disjoint J,’s so that for each B which meets
each J, in an infinite set, (&, {t,: n € B}) is in Q[Ix ,]- Choose an increasing
sequence n(0,0) < n(0,1) < n(1,1) < n(0,2) < -+ <n(0,f) <--- <n({l, ) -+ so that
n(m, [) €EJ, for each m < { <. Clearly (&, {t(n(m, 1)) : m s [ <w}) isin Q[Iy ,].
For each {, define g({) large enough so that for each W C min int(¢(n(0,{))) and
each t = t(m, ) (m < [), there is a W' C int(f) such that (WU W', {¢,: n(l, {) <n})
forces a value on f(n(m,f)) which is less than g(f). We may assume that g is in-
creasing.

Fix any A € VC‘Dl and use the condition py = (WP, {;,,(,,,, p:msl€A}). To
finish the proof, suppose that r is any condition below p,. There is an m < feA
such that t(m ¢ is used in building a condition ¢’ of T". We know that int(¢') con-
tains a set W' so that (W” UW/, {t,: n>n(,1)}) forces a value on f(n(m, 1)) which
is less than g(f). Since fis increasing, it follows that g(f) is forced to be greater
than () . Q

The payoff in this section is the following interesting observation.

THEOREM 4.6: There is a model of b=w; <w,= s=a =c in which every com-
pact space of countable tightness and weight w, is actually Fréchet-Urysohn.

Proof: Start with a model of CH, and force with the countable support itera-
tion of posets of the form Q, * Cm1 * Q[Ix ,] where a suitable diamond sequence
is used to choose which X and x to use. More precisely, diamond will predict a
space X containing w and a point x €X. If X has countable tightness after forcing
with Q, * C,, then we will use Q[T ,] otherwise just use the trivial poset. By
the lemmas in this section it follows that this iteration is weakly bounding, hence
b will be w;. In the extension assume that X is a compact space of countable tight-
ness and weight w;. Let x be a limit point of the countable set  C X. We may
assume that o is dense in X. The diamond sequence will have chosen a space X’
with the same base as X and the point x at some stage in the iteration. If we did
not use Q[Iy ] it was because the reflected copy of X did not have countable
tightness. However, uncountable tightness in compact spaces is upwards absolute
(if cardinals are preserved), hence we were able to force with @[Ty ,]. This forc-
ing introduces a subset of w which converges to x. The fact that a = o, follows
from the fact that the one-point compactification of a W-space is sequential but
not Frechét-Urysohn. Finally, s = 0, since we forced with Q cofinally. Q

QuUESTION 2:  Does @, preserve countable tightness in compact spaces? It is
easy to see that le does but it is certainly known that there are proper posets
which do not [6].

QUESTION 3:  Are there any totally mad families in this model? What if we do
not use Cohen reals at w; limits?
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The only thing blocking a proof, for us, of an affirmative answer to the first
part of the previous question is that we need a “no” answer to the following ques-
tion. However it probably has a “yes” answer, but then we would ask about towers
which are maximal chains in U§<w1 M from Proposition 2.6.

QUESTION 4: Can Q fill maximal towers?

Recall that the proper forcing axiom, PFA, implies that all compact spaces of
countable tightness are sequential. However, at present the most complicated (in
terms of sequential order) compact sequential space that we know under this ax-
jom has sequential order only three!

QUESTION 4: Does PFA imply that all compact spaces of countable tightness
have sequential order at most three?
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ABSTRACT: Let X be a zero-dimensional first category absolute Borel set of ambiguous
class two. Then X can be given the structure of a topological group if and only if X is homoge-
neous and X = X x X. Thus, within the ambiguous class two, zero-dimensional groups only
occur at the low levels, and the indecomposable levels of the hierarchy of difference classes
D23 in 29,

1. INTRODUCTION

All spaces are separable and metrizable.

This paper deals with the topological structure of zero-dimensional topologi-
cal groups. In [3], we gave characterizations of all zero-dimensional homoge-
neous absolute Borel sets. An obvious question is for which of these spaces can
their homogeneity be derived from a topological group structure. This can clearly
be done for those homogeneous spaces that are in the difference class DZ(E(Z)), in
other words, that are (at most) the intersection of a o-compact and a complete
subspace of 2%: the finite spaces, w, 2%, 0 x 2%, 0®, Q, @ x 2%, and Q x w®. Other
zero-dimensional absolute Borel groups must be first category, since a Baire
Borel group is necessarily complete. In [4] it was shown that a first category zero-
dimensional absolute Borel set X has a topological group structure provided X x
X =~ X. In fact, by [5], for such X we have X x X = X if and only if X can be em-
bedded in 2° = P(w) as an ideal on w.

In this paper, we will show that the criterion X x X = X is already necessary for
X to admit the structure of a topological group, ifXEAg; the general case remains
open. It thus follows from the results of [5] that a zero-dimensional absolute
Borel set of ambiguous class two admits a group structure if and only if X is one
of the spaces of low descriptive complexity mentioned above, or X is the unique
zero-dimensional homogeneous space which generates the difference class
Do(29) for some indecomposable ordinal o = o < w;.

2. PRELIMINARIES
For standard notions from topology and descriptive set theory, see Kuratowski

[8] and Kechris [7]. A subset of a space X is clopen if it is both closed and open
in X. A space X is homogeneous if for each x,y € X, there exists h: X = X such
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that h(x) = y. Since we have restricted ourselves to metrizable spaces, we mean
by a complete space a topologically complete metrizable space, that is, a com-
pletely metrizable space.

If A,B C2° then A is Wadge-reducible to B (notation A =, B) if there exists a
continuous f: 2% — 2 such that A = f~Y[B]; if both A <,, B and B =<,, A then A and
B are Wadge-equivalent, notation A =, B. Let T C P(2*). T is called a Wadge class
if for some A C 29 (which is said to generate I),T' = {B: B s, A}. The dual class
of Tis I' = {A:2°-AET}, and A(T) denotes I' N T; T is non-self-dual if T = I
T is continuously closed if, whenever A €T and B <, A, then BET. It follows
from the so-called Wadge Lemma that if T is a non-self-dual and continuously
closed class of Borel sets, then T is a Wadge class which is generated by any A €
I - T The set of pairs of Borel Wadge classes {T, f‘} is well-ordered by inclusion;
the resulting Wadge hierarchy is a refinement of the usual Borel hierarchy. In
fact, the additive and multiplicative Borel classes Zg and Hg are themselves
Wadge classes, so the refinement occurs in the ambiguous classes Ag. The first
level of refinement consists of the so-called small Borel classes or difference
classes Da(Zg), defined as follows (see also Louveau[9]): for each a < w; and
each increasing sequence of Zg-sets {Ap: B < o}, define

Up<a @p-U,pAy if ais odd,

Da(Aﬁ’ B<oa) = § even
Uﬁ<a(Aﬁ_Uy<BAy) if o is even;

$ odd

now Da(Eg) is the class of all Dg(Ap, p<a). We will be interested in the situation
where & = 2, so the Ag are increasing sequences of o-compacta, and the classes
Da(E(Z)) stratify the ambiguous Borel class Ag. The internal characterizations from
[2] and [3] show that the classes Du(Zg) and their duals are closed under homeo-
morphism.

Some more notation: for any class I', we denote by so - T the class of strong
countable unions from [, i.e., so-T = {X: X = UiAi for some sequence A; €T
of closed subsets of X}. We say that I is strongly o-additive if T = so-T. Also,
Tis closed hereditary if A ET whenever X €T and A is closed in X.

The following summarizes some of the results from [2] or [3] in a form that is
suitable for the applications contained in this paper.

THEOREM 2.1: Let X C 29 be homogeneous, not locally compact, and X €
AD,(Z). Let T = [X].

(a Te {D,,(Eg), D,,(Zg)} for some 1 sn<o.

(b) X is everywhere properly I, i.e.,, U€E T - I'(equivalently, [U] = T) for
each nonempty clopen U in X.

() IfT = D,,(Eg), then X = Q x Y for some homogeneous Y such that [Y] =
D,_1(29) (where Do(=9) is the class of all compacta); in particular, X is
first category.

(d IfT = bn(Zg) then X = U,- Y; U P where P ~ 0®, each Y; is closed in X,
and for some homogeneous Y such that [Y] =D, _ 1(ZY) (where DO(Z(Z)) =
{D}), Y; = Y for each i; in particular, X is Baire.
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We will also use the following propositions (again, see [2] or [3]) which give
some information on the structure of arbitrary elements of the difference classes,
and some more closure properties (besides closure under homeomorphism).

PROPOSITION 2.2: Let2=sn<o.

(2) D(Z}) = sa-D,_1(ZD).

(b) For each X, XEbn(ZZ) if and only if X = Y UP forsome YED,, _ 1(22)
and some complete P.

PROPOSITION 2.3: Let lsa<aw.

(a) If o is even then Da(Zg) and lv)(H 1 (Eg) are closed under intersection with
Hg—sets.

(b) Da(Zg) is closed hereditary and strongly o-additive.

3, THE MAIN RESULT

We must show that if X € Ag is homogeneous zero-dimensional first category,
and X # X x X, then X does not admit the structure of a topological group. We will
argue by contradiction, using the group structure to move “large” parts of X
around. As it turns out, we can generally only control the position of countable
subsets (sometimes of certain o-compact subsets). Thus, in the spaces under con-
sideration we want to find countable (or o-compact) parts that are large in a cer-
tain descriptive sense.

We put A= A(Dm()lz)) We first consider the case where X & A.

LEMMA 3.1: Let X € A - A be zero-dimensional and homogeneous Then X
contains a countable subset D such that for every relative II2 -set G of X, if G 2
D then G =, X.

Proof: LetT = [X]. By [3], I is reasonably closed (see Steel [10]), and X is
everywhere properly I' and either first category or Baire. The result now follows
from {6], Lemma 2.3. QO

If X € A, then by Theorem 2.1, [X] € {D,(Z9), D,(2)} for some n=1 (or X is
locally compact). Thus, the following lemma covers the remaining cases.

LEMMA 3.2: LetXbe zero- dlmensmnal and homogeneous, and let I' = [X].

(a) T € {Dy, _ 1(22) Dz,,(Ez)} for some n z 1, then X contains a countable
subset D such that for every relative H2 set G of X, if G 2 D then G is
everywhere proper]y T.

(b) f T e{Dy,_ 1(22) Dz,,(zz)} for some n z 1, then X contains a o-compact
subset D such that for every relative Hz -set G of X, if G 2 D then G is
everywhere properly I'.

Proof: The proof is by induction, and relies on the facts about A from Section
2. If T € {D1(Z9), D1(=0)}, then X is one of Q, @ x2%, or 0”. If X = o we take
for D any countable dense subset of X, otherwise we take D = X. So now assume
the lemma has been proved for T' € {D,,(£3), D,,(ED)}, m <n, and n=2.
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Ifl =D (22) then by Theorem 2.1 we can assume X = Q xY, where Yis
homogeneous, [Y] =D, _ 1(22) By the inductive hypothesis, there exists a count-
able or o-compact D' which works for Y; clearly, we can assume that D' is dense
in Y. If n is odd, then by the deflnmon of D (22) we can write X = A UB with
A being o-compact and BED,, _ 1(22) Now define D = QxD’ifniseven,D =
(Q xD") UA if nis odd. Suppose that G is a relative Y-set 1anontamng If
n is even then by Proposition 2.3 T is c]osed under intersections with H2 -sets, SO
GET;andif nis odd then GNBED,, _ 1(22) since n—1 is even, and it is easy to
show that G = A U (G N B) €T Furthermore, G = U EQ({q} xY) N G is first
category since ({g} xY) N G contains {g} x D' and D" is dense in Y. Suppose Ge
I, then by Proposition 2.2 we can write G =H UPwith HED,, _ 1(22) and P com-
plete, and since G is first category P is not dense in G. Thus, there exists a non-
empty clopen subset U of G with U C H, and clearly some U N ({g} xY) = Vi 1s
nonempty. Then VED, _ 1(22) On the other hand, G N ({g} xY) is a relative I'Iz-
set in {g} x Y which contains {g} x D', so it is everywhere properly D, _1,and we
have a contradiction. We conclude that G ET - I', and the same proof shows that
in fact G is everywhere properly I'.

Finally, assume that T’ D,,(Zz) By Theorem 2.1, we can write X = UiY,- U
P, where P~ o®, each Y; is closed in X and homeomorphic to the same homoge-
neous Y, [Y] = D,,_ 1(22) By the inductive hypothesis, there is a dense D; C
which works for Y;. If r is even, then by the def1n1tlon of D,,(Zz) we can write X

= A UB UC with A being o-compact, BED, _ 2(22) (respectively, B = if n=
2), and C is complete. Now define D = U D;if nisodd, D = U D;UA ifnis
even. Suppose that G is a relative H2 -set in X containing D. If n is odd then I' is
closed under intersections with Hz -sets by Proposition 2. 3 so G €T; and if n is
even then, as above, GN(AUB)=AU(GNB)ED, _ 1(22), and G N C is com-
plete, so G = (G N (A UB)) U (G N C) €T. Furthermore, G is Baire; indeed,
since X is everywhere properly T, both U Y; and P are dense in X, so G is dense
since it contains U D;whence GNPisa dense complete subset of Y. Suppose G
€1, then by Proposmon 2.2 we can write G = U G; with each G; eb,_ 1(22)
closed in G, and since G is Baire some G; is not nowhere dense in G Thus, there
exists a nonempty clopen subset U of G with veb,_ 1(22) Again using the fact
that U Y; is dense in X, we have that some U NY; = V is nonempty. Slnce Y;is
closed in X, VED, _4 (22) On the other hand, G N Y; is a relative II2 -set in Y;
which contains D;, so it is everywhere properly D, _ 1(22), and we have a contra-
diction. Thus, G € I’ - I, and again the same proof yields that G is everywhere

properly I'. Q

The following lemma shows how we want to use the group structure to move
the countable or o-compact part found above around the space.

LEMMA 3.3: Let X C2% admit the structure of a topological group.

(a) Suppose that X is not o-compact, and D € X is o-compact. Then there
exists a homeomorphism h: X — X such that k[D]ND = &.

(b) Let T'C P(2%) be strongly c-additive, closed hereditary, and closed under
homeomorphlsrn Suppose that X € T, D C X is countable, and F € Tisa
relative 2‘.2 _set in X. Then there exists a homeomorphism h: X — X such

that A[D]NF = @.
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Proof: (a) Since the subgroup (D) generated by D is o-compact, we can pick
pEX-(D). ThenpDND = Psoh: X=X, x —>px is as required.

(b) Write F = U F; with F; closed in X; then F; €T smce T is closed-heredi-
tary. Since [ is strongly o-additive, Y = U UdeDF dl'ETsoYEX,sayp€E
X-Y. Then pD NF = Jso we define £ asin (a). Q

We are now in a position to state and prove our main theorem.

THEOREM 3.4: Suppose X is a zero-dimensional absolute Borel set of the first
category. If X &€ Ag, then X admits the structure of a topological group if and only
if X is homogeneous and X = X x X.

Proof: By [4] the condition X = X x X is sufficient, and by the remarks in the
introduction the theorem certainly holds leEDz(ZZ), SO assume X¢D2(22) isa
group but X % X x X. By the results of [3], [X] = D (22) for some 2 <o < w, and
by [5] o is decomposable. Write X = Dy(A,, y <), and let D be the countable or
o-compact subset of X given by Lemmas 3.1 and 3.2.

Case I: o = nis finite and even. Define F = Aj-Ag = XNAp, andT =
DZ(ZZ) Then T is strongly o-additive, closed heredltary, and closed under homeo-
morphism, X & T since n > 2, and FET is a relative 22 -set in X. Since D is count-
able in this case, we can apply Lemma 3.3(b) to obtain an autohomeomorphism
h of X such that A[D] N F = &. Using the fact that I" and I are closed under ho-
meomorphlsm we see that k[D] has the same property D has. Thus, since X - F =

D, Ay, m m <n-2)is arelative I'I2 -set in X containing A[D], we have that X -
F =, X, a clear contradiction.

Case 2: o =nis finite and odd. Define F =Ay U D, then F is o-compact, and

Xis not o-compact since n= 1. Applying Lemma 3.3(a) we find h: X = X with A[F]

Q again, h[F] has the same property D has, because F 2 D. Thus, since

X Ao _1(A{ 4 m <n=1) is a relative H2 -set in X containing h[F], we have
that X - F .+ X, another contradiction.

Case 3: «is infinite. Put p=aif ais even, P=o+1if ais odd. Foreach y<
define KY = A,if ais even, A, = U5<YA5 if ais odd. Then X = Dg(A,, y <B).
Since o is decomposable, we can write & = oy + a, with lim(oy) and ag, ay <o
Define By = o, and By = oy if o is even, By =y + 1 if ais odd. Clearly, B = By +P2,
2 < By, B2 <0, and both By and B, are even. Now put F =Dg (A, y<B1) = X NAg,,
andT'= Dﬂl(Zz) then T is strongly o-additive, closed heredltary, and closed under
homeomorphism, X € T since By <o, and FET is a relative 22 set in X. Also, note
that X - F = Dﬁz (Kﬁl p V< B,) is not Wadge equivalent to X since B, < 0. Since
D is countable in this case, we can apply Lemma 3.3(b) to obtain A: X — X such
that A[D]NF = . Then X - F is a relative 9-set in X which contains A[D], so
X - F =, X, and we again have the required contradiction.

Using [5], the following is an immediate consequence of the main theorem.

COROLLARY 3.5: Suppose X € Ag is zero-dimensional. Then X admits the
structure of a topological group if and only if X is finite, or X is one of w, 2° o
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%29 0? Q, Q x2%, or @ x w®, or X generates Da(Eg) for some infinite indecom-
posable a < wy.

One would of course want similar results for all homogeneous zero-dimension-
al absolute Borel sets. We conjecture that Theorem 3.4 holds in the general case.
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ABSTRACT: For a completely regular space X, C(X) denotes the algebra of all real-valued
and continuous functions over X. This paper deals with the problem of knowing when the uni-
form closure of certain subsets of C(X) has certain algebraic properties. In this context we give
an internal condition, “property A,” to characterize the linear subspaces whose uniform closure
is an inverse-closed subring of C(X).

For a completely regular space X, we denote by C(X) the algebra of all real-
valued and continuous (not necessarily bounded) functions over X. We consider
the uniform topology on C(X).

In the subject of spaces of continuous functions there are many interesting
problems still unsettled. One of the most famous consists of finding an internal
algebraic and topological characterization of the space C(X). Many authors have
treated this topic from different points of view. See, for instance, the works of
Gelfand, Raikov, and Chilov [13], Fan [9], Kolhs [21], Stone [25], [26], and
Arens and Kelley [4], for the compact case, and those of Anderson and Blair [3],
Anderson [2], Hager [16], Mrowka [22], Henriksen [18], Henriksen and Johnson
[19], Plank [23], and Csészér [8], for the general case.

In the study of this problem there exist many aspects where it is very important
to know algebraic properties of the uniform closure of certain subsets of C(X).
For instance, this becomes clear in every attempt of directly generating C(X) from
one of its subfamilies.

In [11] we characterized the linear subspaces of C(X) whose uniform closure
is closed under composition with uniformly continuous functions over R. This
was obtained by using the so-called “property C” (see Theorem 7 below), a notion
we are unable to use to determine when this uniform closure has other algebraic
properties such as being a subring or being inverse-closed.

Here, we are mainly interested in determining an internal condition on a subset
S of C(X) in order to its uniform closure < be an inverse-closed subring contain-
ing all the real constant functions. (It is well known that the uniformly closed and
inverse-closed subrings of C(X), or more exactly the “Algebras over X” defined
by Hager and Johnson in [17], play an important role in all this framework as can
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be seen, for instance, in Hager [16], Henriksen and Johnson [19], Isbell [20],
Blasco [5], [6], [7], Garrido [10], and Steiner and Steiner [24])._

Clearly, a sufficient condition for our purpose will be when I = C(X), that is,
when 3 is uniformly dense in C(X). In [11] we make a general study of the uni-
form approximation in C(X) and we obtain in particular the next result about uni-
form density. Our notation and terminology will be as in Gillman and Jerison

[14].

THEOREM 1: [11] Let I be a linear subspace of C(X). The following condi-

tions are equivalent:
() S is uniformly dense in C(X).
(b) For each countable cover {C,}, ez of X by cozero-sets such that C, N Cn
=@ if |n = m|> 1 (we call 2-finite cover) there is & € S with [h(x) -n| <2
when xE€C, (n € 2).

So, the above condition (b) over a linear subspace ¥ makes S to have the re-
quired algebraic properties. But this sufficient condition is not internal because
we use the cozero-sets of all the continuous functions on X. To avoid that, we give
the next definition.

DEFINITION 2: A subset & of C(X) has the “property A” if for each 2-finite
cover {C,}, ez of X by cozero-sets of functions in 3, there is h € I with |h(x) - n|
<2 whenx€C, (nE€Z).

Now, by means of this property we shall state our main result.

THEOREM 3: Let & be a linear sublattice of C(X) containing all the real con-
stant functions. The following conditions are equivalent:
(a) S has the property A;
(b) S is closed under composition with continuous and monotonic functions
defined on real open intervals;

(c) S is an inverse-closed subring of C(X).

Proof: (a) implies (b). Let f € Sand ¢ a monotonic (for instance nondecreas-
ing) function defined on the real open interval I containing f (X).

Lete>0and C,={xEX: (n-1)e <@ of(x) <(n+1)c}, n €Z. We shall prove
that there exist # € 3 such that |A(x) - n| <3 when x € C,,. This will be enough to
see that @ o f belongs to 3. Indeed, if x € X then x € C, for some n € Z and then
leh(x) - @ o f(x)| s |eh(x) - ne| + |ne - @ o f(x)| <3¢ +& . Note that from the hypoth-
esis such a function / must exist whenever every C,, is a cozero-set of some func-
tion in S, but in general this can fail.

Let C,' = {x EX: a,_1 < f(x) < &y,1} Where {a,},e7 is a nondecreasing se-
quence in R U {-, 0} such that:

¢(o,,) = ne if ne € ()
o, = — if ne & @(I) and ne = infe(/)
a, =« if ne & () and ne = supg(l).
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It is easy to check that a, — a,_; >0 when a, is a real number, C,, C C,/’ for
every n €Z and {C,'}, ez is a 2-finite cover of X.

For each n € Z choose an arbitrary real number ¢, > 0 but such that g, <(a, ~
O _1)/4 if (0= _1)/4 is well defined, and &, < (044 1= 0p)/4 if (Cpy 1= 0tn)/4
is also well defined. Then take g, € I with | g, - f| < &, (recall that f € 9%).

Now, let D, = {x EX: 0,_1 + & < 8p(X) < Upyy - €,}, n € Z. Since S is a linear
sublattice containing all the real constant functions, every D, is a cozero-set of
some function in 3. Moreover, for every n €Z, we have D, C C,C D,_;UD, U
D, 1. Indeed, the first inclusion is clear and for the second one we can consider
three cases:

(1) “a,_q + 26, < f(%) < Opyq — 2€,.” Then o, 3 + &, < gu(x) < &y q - &, and

hence x ED,,

(2) “a,_1 <f(x) < a,_q + 2&,.” In this case a,_y must be in particular a real

number and so we have o, _p +€,_1 < 0,;_1 = €41 < Zy1(¥) <f(x) +&, 1=
Op_q +28, +8, 1 <0y —&,_1. Thus xED,_j.

(3) “Op41 — 28, < f(x) <, ,1.” Using an analogous argument as the preceding

one we can show that now xE€ D, ;.

Thus {D,},cz is a 2-finite cover of X by cozero-sets of functions in . And
finally, by (a) there exists £ € I such that |h(x) - n| <3 if x € C,, as we wanted.

(b) implies (c). In order to see that 3 is a subring it is enough to prove thatf2
€ ¥ whenever f €3J. If f >0, then f2 =@ o f where @ is the continuous and mono-
tonic function ¢(t) = ¢* defined over (0,) and therefore, f% belongs to S. Since
S is a linear sublattice containing all the real constant functions, the general case
follows from the equality f2=|f[* = (|| + 1)* - 2|f] - 1.

On the other hand, if f € F and Z(f) = @, then the function 1/f% belongs to ]
because l/f2 =yo f% where v is the continuous and monotonic function y(¢) =
1/t defined over (0,%). As a consequence, 1/f€ Jsince 1/f=(1/f* - fandso 3
is inverse-closed.

(¢) implies (a). Let {C,;},,=7z be a countable 2-finite cover of X by cozero-sets
of functions in 3. We shall proceed in two steps.

First step: We define Dy = U,, <0Cp (note that Dy is also a cozero-set of some
function in ). From the properties of % we can choose gg, g1, -5 &n» ---» functions
in S with 0 = g, =1/2" such that Dy =coz(gg) and C,, =coz(g,) forevery n=1,2,....
Since the function g = 3g, belongs to I and g(x) > 0 for every x € X, then the se-
quence {v,}n=odefined by vn=g,,/g for each n, is a partition of unity by functions
in § with Do =coz(vg) and C, =coz(v,) forevery n=1, 2, ....

If we consider & = E(l/(n + 1)2)v,, then h is also in I and satisfies:

h(x) =1lon Do— CO
1/22 s h(x)= 1 0on Cy
1/(n+2? sh(x)<1/r*onC,, n=z1.

Now, we can apply the classical Weierstrass approximation theorem to derive
that hlf2 belongs to J because 0 </ < 1. So, the function f; = (1/h1/2) -1isin 3
and satisfies:

fikk)=0 on Un <0Cn—Co
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0<fix)=1lonCy
n-l<ficysn+lonCynz1l.

Second step: By mimicry of the above step we construct a function f, € ]
with:

f)=00nU,.0Cp-Co
~1=sf(x)s0onCy
n-1sfx)ysn+lonCypn=-1.

Finally the function f + f, € S satisfies |(fi +f2)(x) - n| <1 when x€E€C,, for
every n € Z. And we complete the proof if we take h € I with (fi+f)-k|<1. QO

We would like to remark that the above result can be extended to the linear
subspaces of C(X) that are not necessarily sublattices. In order to do that, we need
to change the definition of the property A only a little (see [12]). For further ap-
plications of this result, such as the generation of Algebras on X, or the study of
zero-sets and cozero-sets spaces defined by Gordon [15] and Alexandroff [1], re-
spectively, or the problem of extension of continuous functions, etc., we also re-
fer to [12].

Now we shall show how to obtain, as an easy corollary of the above theorem,
the well-known result by Henriksen and Johnson [19] about the Algebras on Lin-

delof spaces.

COROLLARY 4: (Henriksen and Johnson [19]) If X is a Lindeldf space and 3
is an Algebra on X (that is, I is a uniformly closed and inverse-closed subring of
C(X) containing all the real constant functions and separating points and closed
sets of X), then I = C(X).

Proof: First note, that under these conditions 3 is also a sublattice of C(X).
And so, from Theorem 3, I has the property A. Now, if we compare property A
and the condition of uniform density in Theorem 1 we shall derive that I is uni-
formly dense in C(X), and therefore, I will be C(X) if we see that every cozero-
set in X is the cozero-set of some function in 3.

Thus, if C is a cozero-set in X then C = UieIC,- where C; are cozero-sets of
functions in 3 because & determines the topology on X. Since every cozero-set is
an Fg-set and X is a Lindeldf space then C is also Lindelof and so, we have C =
U,,E nCi, And this complctes the proof because any countable union of cozero-
sets of functlons in & is also a cozero-set of some function in J. QO

REMARK: In [23], Plank gives a different version of the above corollary that,
as it is said there, has a slightly more algebraic flavor. It consists of an (internal)
algebraic characterization of C(X), for X a Lindeldf space, when it is considered
on C(X) the structure of ®-algebra (for that notion see [19] or [23]). This charac-
terization and Corollary 4 are in fact the same result but given in different frame-
works and then, it also can be obtained as a consequence of Theorem 3. In order
to check that both results are equal, it is enough to note that if ¥ is a ®-algebra
of real-valued functions, that is, if & can be represented as an algebra of contin-
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uous functions on a (realcompact) space R(S), then J satisfies the conditions by
Plank if and only if R(S) is a Lindelsf space and S is an Algebra on R(3).

We are going to finish this note by setting some open questions.

QUESTION 5:  Let 3 be a linear sublattice of C(X) containing all the real con-
stant functions. Is it possible to give an internal, necessary and sufficient, condi-
tion over & making its uniform closure to be a subring?

That is, we are looking for an analogous result to Theorem 3, but deleting the
condition of being inverse-closed. It is clear that the property A will be sufficient
for that, but it is not necessary as the next example shows.

EXAMPLE 6: [11] Let J be the subset of C(R) defined by
K= {E{L 1Jfipi: f; € Co(R) and p; is a polynomial, i=1,...,n(n€ N)}

where Co(R) denotes the set of all continuous functions over R vanishing at in-
finity. We saw in [11] that I is a uniformly closed linear sublattice and subring
containing all the real constant functions. But 3 has not the property A because
it is not inverse-closed. To show that, it is enough to check that the function f(x)
= exp(—x?) is in I (in fact f € Co(R)) but 1/f is not.

On the other hand, in [11] we defined and studied another internal condition
called “property C” that can be characterized in the following way.

_THEOREM 7:  [11] A linear subspace S of C(X) has the property Cif and only
if § is closed under composition with uniformly continuous functions over R.

Also, we need to recall the next result about the property C.

PROPOSITION 8: [11] If the uniform closure of a linear subspace S is a sub-
ring and sublattice containing all the real constant functions, then < has the prop-
erty C.

Thus, from the above Proposition 8 it follows that property C is a necessary
condition for our purpose. And now, from Theorem 7 we can see that, unfortu-
nately, this property is not sufficient even when the linear sublattice J is itself a
subring. For that, we shall use an example due to Isbell that, in particular, makes
clear how the uniform closure of a subring need not be a subring.

EXAMPLE 9:  (Isbell [20]) Let X be the subspace of the plane consisting of the
horizontal lines L, = {(x,n): x€ R} forn =2, 3, ..., and let S the set of all contin-
uous functions f on X such that for some m, f is constant on each L, for n > m.
Obviously S is a linear sublattice_and subring containing all the real constant
functions. Moreover, S, and hence S, are closed under composition with uniform-
ly continuous functions defined on R and then, from Theorem 7, 3 has the prop-
erty C. But S is not a subring. Indeed, if we take the function g mapping each L,
homeomorphically onto the real interval (n - 1/n, n +1/n), then g can be approx-
imated by functions in 3. But g% is not in S, because this function maps every L,
onto the interval (n? + l/n2 -2,n% + 1/n2 +2) whose length is just 4.
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All the above tells us that we are looking for a property between C and A. On
the other hand, it is easy to check that this unknown condition can be externaly
characterized in terms of composition with continuous functions over R. In fact,
the uniform closure of a linear subspace is a linear sublattice and subring contain-
ing all the real constant functions if and only if this uniform closure is closed un-
der composition with the functions of the subset of C(R) defined in Example 6
(see [11]). This subset is a wide class of continuous functions, but it is not all
C(R). Thus, the following question arises.

QUESTION 10: Let Sbe a linear sublattice of C(X) containing all the real con-
stant functions. Is it possible to give an internal, necessary and sufficient, condi-
tion over & making its uniform closure to be closed under composition with all
the continuous functions over R?

From the above study it follows at once that Questions 5 and 10 are not equiv-
alent. The property C is again necessary but not sufficient. And the property A is
only sufficient because it is easy to find uniformly closed linear sublattices that
are closed under composition with all C(R) but not inverse-closed, that is, with-
out the property A. For instance if X is a nonpseudocompact space and p € pX -
vX (where fX and vX denote, respectively, the Stone-Cech compactification and
the Hewitt-Nachbin realcompactification of X), then the set S of all the continu-
ous functions over X having continuous extension to X U {p}, satisfies the re-
quired.
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To reduce generality to a manageable degree, we confine ourselves to the case
when the domain is an f-ring (i.e., a lattice-ordered ring which is a subdirect prod-
uct of totally ordered rings), and the “continuous” functions are polynomials.
Even then, there is some doubt about what should be meant by THE intermediate
value theorem, and three versions are considered below. What we regard as the
most natural one is presented first. Our main results will seem counter-intuitive
at first because we usually associate the intermediate value theorem with con-
nectedness. It turns out that the connectedness of the range space is what is in-
volved; not that of the domain.

Suppose A is a commutative f-ring with identity element, let A[¢] denote the
ring of polynomials with coefficients in A, and let G denote a subset of A[¢] closed
under translation by elements of A; that is, if p(f) € G and a €A, then p(t - a) €
G. Note that for each positive integer n, the set of polynomials of degree no larger
than n and the set of monic polynomials of degree r are closed under translation.

(1) If, for every p(f) € G, and distinct elements u,v EA such that p(u) >0 and

p(u) < 0, there is a w EA such that p(w) =0 and u A vsw=u Vv, we say
the intermediate value theorem (IVT) holds for G. In case G =A[t], then A
is called an IVT ring.

(2) If the ring C(X) of all continuous real-valued functions on a (Tychonoff)

space X is an IVT ring, then we call X an IVT space.

In the latter case, p(x) > 0 means that p(u(x)) = 0 for all x €X, and p(u(x)) >0
for some x € X. The meaning of p(v) <0 is similar, and writing p(w) = 0 means
p(w(x)) =0 for all x EX.

In this paper we consider f-rings in which the intermediate value theorem holds
for certain G C A[¢], and in particular, we consider IVT rings and spaces. In the
second section we give basic properties of such and use these to give examples
of several types of IVT rings and spaces. We show that the intermediate value
theorem holds for linear polynomials in an f-ring A if and only if A is 1-convex.
(That is, a is a multiple of b whenever 0 <a = b.) For a (Tychonoff) space, this is
equivalent to saying that in C(X), the intermediate value theorem holds for linear
polynomials if and only if X is an F-space (in the sense used in [7]). We show that
every compact zero-dimensional F-space is an IVT space. Also, we show that ev-
ery C-embedded subspace of an IVT space is an IVT space, and every Dedekind-
MacNeille complete f-algebra is an IVT ring.

It is an open question as to whether or not there is an infinite connected IVT
space. In the third section we show that if there is a connected IVT space, then it
must be hereditarily indecomposable. In fact, every continuum contained in an
IVT space is hereditarily indecomposable. We also give examples of connected
F-spaces that are not IVT spaces, and of hereditarily indecomposable continua
that are F-spaces. The fourth section gives two variations on the concept of IVT
rings and spaces and their properties.

Preliminaries

A ring A is a subdirect product of the family of rings {A,: x € X} for some
index set X, if A is a subring of the direct product [], xA, such that the projection
of A onto each A, is a surjection. An f-ring is a lattice-ordered ring which is a
subdirect product of totally ordered rings. An f-algebra is an f-ring which is also



110 ANNALS NEW YORK ACADEMY OF SCIENCES

an algebra over the real field R, in which a positive scalar multiple of a positive
element is positive. For general information on f-rings and f-algebras, see [2].
Given an f-ring A, we let A* = {a €A: a 20}, and for an element a EA, we leta™*
=aVv0,a" =(-a) VO, and |a|=a V (-a). A ring ideal ] of an f-ring A is an [-ideal
if |a|=|b|, b EIimplies a €1 or equivalently, if ] is the kernel of some lattice-
preserving ring homomorphism (f-homomorphism).

Suppose A is an f-ring and ] is an ideal of A. The ideal I is semiprime (respec-
tively, prime) if J2 C 1 (respectively, JK CI) implies J C [ (respectively, J C I or
K C1) for ideals J,K and the f-ring A is called semiprime (respectively, prime) if
{0} is semiprime (respectively, prime). It is well known that in an f-ring, an {-
ideal I is semiprime if and only if it is an intersection of the prime {-ideals which
are minimal with respect to containing I. If P is a prime {-ideal of the f-ring A,
then A/P is a totally ordered prime ring and all {-ideals of A containing P form a
chain (see [2, Chap. 8]). On several ocassions, we will make use of the following
well-known result.

A semiprime f-ring is a subdirect product of totally ordered prime (1.1)
rings. )

The f-ring A is called archimedean if for any 0 <a €A +, the set {na: n EN}
is not bounded above. (Here and elsewhere, N denotes the set of positive inte-
gers.) A commutative f-ring A is called I-convex if 0 < a <b implies that there is
a w E A such that a = wb, or equivalently if every ring ideal of A is an [-ideal. In
an f-ring with identity element, the w of the definition may be chosen so that 0 <
w = 1. Further equivalent properties can be found in [6], [14], and [16]. A known
fact about 1-convex f-rings that we will make use of is: .

For any element a of a 1-convex f-ring with identity element,
there is another element c, such that @ = c|a| and |a|=ca and (1.2)
le| = 1.

Now suppose X is a topological space. Let C(X) denote the f-ring of all real
valued continuous functions defined on X, under pointwise operations. A subset
Y of X is a zeroset if Y = {x €X: f(x) = 0 for some f € C(X)}. A cozeroset is the
complement of a zeroset. Given an f € C(X), we let Z(f) (respectively, coz(f))
denote the zeroset (respectively, cozeroset) determined by f. A space X is Ty-
chonoff if it has a base of cozerosets. Following standard notation, we let BX de-
note the Stone-Cech compactification of X. For background information on C(X)
and its Stone-Cech compactification, see [7, Chapter 6].

A subspace Y of X is C-embedded (respectively, C*-embedded) in X if every f
€ C(Y) (respectively, bounded f € C(Y)) can be extended to a function in C(X). If
every finitely generated ideal of C(X) is principal, we call X an F-space. A num-
ber of conditions are known to be equivalent to X being an F-space (see [7, Chap-
ter 14]). In particular, we note that the following are equivalent:

(a) X is an F-space;

(b) Every cozeroset of X is C*-embedded;
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(c) C(X) is 1-convex.
In this article, all f-rings considered are commutative with identity element
and all topological spaces that arise are Tychonoff.

2. IVT RINGS

In this section, we present some basic properties of IVT rings and spaces and
use these properties to give examples of IVT rings and spaces. In particular, we
show that a compact zero-dimensional F-space is an IVT space.

For any f-ring A with identity element, we let A* = {a €EA: |a|<n 1 for some
n €N}, and call A* the subring of bounded elements of A. We begin by taking
note of the following. The proof is straightforward and has been omitted.

PROPOSITION 2.1: Let A be an f-ring.

(a) If A is an IVT ring and B is a convex f-subring of A (i.., B is an f-subring
such that 0 s @ <b with a €A, b €B implies a €B) then B is also an IVT
ring.

(b) If A is an IVT ring, then so is A*.

(c) A direct product of IVT rings is an IVT ring.

The converse of part (b) of the proposition does not hold, as we will see after
the next theorem. However, because C*(X) and C(fX) are isomorphic, it follows
from the proposition that if X is an IVT space, then so is its Stone-Cech compac-
tification BX. Whether the converse holds is an open question.

We now characterize commutative semiprime f-rings with identity element for
which the intermediate value theorem holds for linear polynomials.

THEOREM 2.2: If A is a commutative semiprime f-ring with identity element,
then the IVT for linear polynomials holds if and only if A is 1-convex.

Proof: Suppose first that the IVT for linear polynomials holds in A, and as-
sume 0 <a <b in A. Let p(f) = a - bt. Because p(0) =a >0, and p(1)=a-b< 0,
there is a w EA such that 0 = w < 1 and p(w) =a - bw =0. Thus, a =bw and A is
1-convex.

Suppose, conversely that A is 1-convex and that p(f) = a + bt is a linear poly-
nomial in A[¢] such that for distinct u,v in A, p(u) >0 and p(v) <0. Then, a <-bv
< |bv| and hence a* = |bv|. (To sce that the latter holds, note that a = a* -a",
and in any totally ordered ring, a = a* ora* = 0.) A similar argument shows that
a~ =|bul. Because A is 1-convex, there are w,w' € A" such that a* = w|bv| =
w|b|v|and a= = w'|b||lul. So,a=a*-a~ = (w|v|-w'|u)|b| Using 1.2 yields an
r such that |b| = rb. Letting z = — (w|v| - w'|u[)r, we see that p(z) =0.

Now consider z' = (z A (u Vv)) V (u A v). Clearly, u Av=z' su Vv We will
show that p(z') = 0. By 1.1, A is the subdirect product of totally ordered prime
rings A, for some index set X. For any a €A, we let a, denote the projection of a
onto A,. To show that p(z') = 0, it suffices to show that if p(z), =0 for each x. If
b, >0, then since a, + byv, < 0 =a, + bz, s a, + byu,and A, is prime, it follows
that v, s z, < u,. Next, note that if b, <0, a similar argument shows that u, sz, <
v,. So if either b, >0 or b, <0, then z,' =z, and hence p(z'), = 0. Otherwise, b, =
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0 and a, + bz, = 0 implies a, =0, whence p(z'), = a, + b,z,’ = 0. It follows that
the JVT for linear polynomials holds inA. QO

The converse of part (b) of Proposition 2.1 need not hold because a totally or-
dered ring may fail to be 1-convex even if its subring of bounded elements is 1-
convex. For example, if A is the ring R[x] of polynomials lexicographically or-
dered with 1 € x € x2 « +++ < x" < -++, then A fails to be 1-convex, while A*
=R. There is also an archimedean semiprime f-ring A that fails to be an IVT ring
while A* is an IVT ring. Consider B = {f € C(w): f coincides eventually with a
polynomial}. Because B fails to be 1-convex, it is not an IVT ring, while B* = {f
€ C(w): fis eventually constant} is an IVT ring. (Here and elsewhere, w denotes
the discrete space of finite ordinals.)

An f-ring A is called square-root closed if for any a €A*, there is a b € A such
that b2 = a. If the intermediate value theorem holds for certain polynomials, then
(square) roots must exist.

THEOREM 2.3: Suppose A is a commutative semiprime f-ring with identity el-
ement.
(a) Ifin A, the IVT for monic polynomials of degree n holds, then for any s €
A*, there is an r €A such that 7" = s.
(b) If A is an f-algebra over the field of rational numbers, then the IVT for
monic quadratic polynomials holds if and only if it is square-root closed.

Proof: (a) We may assume s > 0. Apply the IVT with p(t) =" -5, u=1+s5,
and v=0.

(b) Part (a) shows that if in A the IVT for monic quadratic polynomials holds,
then it is square-root closed.

Now suppose A is square-root closed, p(f) EA[¢], and u,v belong to A with p(u)
>0, p(v) <0. By completing the square, we may assume p(¢) is of the form p(z) =
2 —ffor some fEA. By 1.1, A is a subdirect product of totally ordered prime rings
A, for some index set X. For any a €A, we let a, denote the projection of a onto
A,. Note that for each x, -f, = vx2 -f; = 0.So f=0, and there is a b EA* such
that f= b2. Thus p(f) = 2 - b, Since p(u) >0 and p(v) <0, v2 <b? <u? Letw=
(b A u*) - (b A u”). We will show that p(w) =0 and u A vsws=u V v. Note first
that for any x, u, = u,* and u,” =0, or, u, = -u,” and u,* = 0. It follows that for
each x,

b, if u, <0

b, ifu, >0
wx_{
0 ifu,=0,

and w? = b2, so p(w) =0. It is easy to check that for each x, u, A v, sw, su, Vv,
Therefore, u A vsws=u VvinA. Thus in A, the IVT for monic quadratic polyno-
mials holds. O

Before giving our next result, we need to recall 2 known fact about 1-convex
f-rings: every [-homomorphic image of a 1-convex f-ring is 1-convex [14, 2.3].

THEOREM 2.4: Every semiprime [-homomorphic image of a semiprime IVT
ring is an IVT ring.
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Proof: Suppose B = A/I is a semiprime [-homomorphic image of the semi-
prime IVT ring A. Suppose p(f) = pra Oaiti €A[t], p(u+I)>0,and p(v + I) <0
mod I for some u,v €A. It follows from 2.2 and the fact that {-homomorphic im-
ages of 1-convex f-rings are 1-convex, that B is 1-convex. So by 1.2 there is a
¢ €A such that |v —u|=c(v - u). Let g(t) EA[¢] be defined by q(t) = |v —u|p(t) +
c(v - D)(p(v) - p(u))*- Now q(v) = |v - u|p(v) and q(x) = |v - u|p(u) +c(v - w)(p(¥)
_p@))* =|v - u[p(u) + (p(v) - p(w))*] =|v - u|[p(u) V p(v)]. Hence:

q(v) s q(u). ™

Let k = g(v)* A g(u), and observe, using (*), that g(u) -k = 0 and q(v) -k=0.
Since A is an IVT ring, there is a w €A such that g(w) =kandu Avsws=su V.

Because g(v) = |v - u|p(v) and p(v) <0 mod I, we must have g(v)* EI". Because
q(u) = |v - u|[p(v) V p(u)] and p(u) > 0 mod I, we must have g(«) = 0 mod [. It
follows that k €1. So g(w) =0 mod I. Since (p(v) - p(u))* =0 mod I, we have g(w)
=|v-u|p(w)=0mod I. By 1.1, A/I is a subdirect product of totally ordered prime
rings {A,}, ¢ x for some index set X. For b €A/I, let b, denote the projection of
binA,. If v, = u,, then p(w), =0. If vy =u,, then because u A vsw=u Vv, w, =i,
=v,. Since p(u) >0 mod I and p(v) <0 mod I, it follows that p(w), =p(u), = p(V)
=0 mod I. Since p(w), =0 for each x, p(w) =0 inA/I. Q

A consequence of this theorem is given next. Part (a) follows directly from
the theorem and part (b) follows from Proposition 2.1(b) and the well-known fact
that every cozeroset of an F-space is C*-embedded.

COROLLARY 2.5: Let X be an IVT.

(a) Every C-embedded subspace of X is an IVT space. In particular, if X is
compact, then every closed subspace of X is an IVT.

(b) For every cozeroset U of X, C*(U) is an IVT ring.

Recall that a topological space X is zero-dimensional if it has a base of clopen
sets and is strongly zero-dimensional if PX is zero-dimensional. Also, a regular
element of a commutative f-ring is one which is not a divisor of zero. The follow-
ing theorem will be useful later.

THEOREM 2.6: Suppose X is a compact zero-dimensional F-space, A = c(X),
and the IVT for monic polynomials holds in A. If p(f) = >t Oa,-ti €A[t] and u,v
€ A are such that p(z) >0, p(v) <0 then there is a w € A such that p(w) =0 on
coz(a,) and u A v sw <u V v. In particular, if the IVT for monic polynomials
holds, then it also holds for all polynomials with a regular leading coefficient.

Proof: Because X is a zero-dimensional F-space, there is a unit # €A such
that |a,| = ha,. So we may assume that a, >0. Since zerosets of a zero-dimension-
al space can be separated by clopen sets, we may choose for each k €N, a clopen
set V such that {x: a,(x) 2 1/2¥} CVand Vi N {x: a,(x) s 1/2+ 1} = @. Let Uy
= Vy, and for each k=2, let U=V -V, _y. Then the Uy are clopen, pairwise dis-
joint, and their union is coz(a,). Note that the IVT for monic polynomials holds
in C(U}) for each k.

Let kEN.For0s is n-1,let b; € C(Uy), be defined by b; = a;/a,. Define
gi(H) ECUPIE] by qu(t) =t" + b, 1"~ 14 ... +bg. Note that if we restrict the
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polynomial p(¢) to Uy, then p(t) = a,q(t). Then gu(u) = 0 and gy(v) < 0 on U}. So
there exists a wy, € C(Uy) such that u A vswy< u Vvon U and g(wp) =0.

Now define w € C(coz(a,)) by w(x) = wy(x) whenever x EU;. Thenu A vsw
=u V v. Since u,v must be bounded on coz(a,), w is bounded on coz(a,). Then
since X is an F-space, there is a continuous extension w' of w to all of X with u A

vsw' su Vv Then p(w) =0 on coz(a,). Q

An f-ring A is said to have the bounded inversion property if a >1 implies that
a is invertible, or equivalently, if every maximal ideal of A is an {-ideal (see [9]).
For any f-ring, we let Max(A) denote the set of all maximal ideals of A, under the
hull-kernel topology. If A satisfies the bounded inversion property, then Max(A)
will be a compact Hausdorff space. Note that a 1-convex f-ring does satisfy the
bounded inversion property; so for a 1-convex f-ring, Max(A) is a compact Haus-
dorff space. For a Tychonoff space X, Max(C(X)) = BX. See [10] for more infor-
mation on the hull-kernel topology.

The first part of the following theorem seems to be well known without appear-
ing in the mathematical literature.

THEOREM 2.7: Suppose A is a semiprime f-ring with identity element.

(a) If A is 1-convex, then each maximal ideal of A contains a unique minimal
prime ideal.

(b) If, in addition, A has the bounded inversion property, Max(A) is zero-
dimensional, and A/P is an IVT ring for each minimal prime ideal P, then
A is an IVT ring.

Before giving the proof of the theorem, we note the following.

REMARK 2.8: If p(¢) EA[¢], and u,v € A satisfy p(u) > 0 and p(v) < 0, then
the zeros of the polynomials p(¢), g(f) = p(t + (u A v)) are translates of each other
by the amount u A v, and if #'= u—(u A v), v'= v~ (u A v), then g(u') >0, g(v')
< 0 and 4’ A V' = 0. Similarly, if p(«) <0 and p(v) > 0, or p(u)p(v) <0.

Proof of Theorem2.7: (a) Suppose P and Q are distinct minimal prime ideals
of A, and choose x € P*\Q. Since P is a minimal prime, there is a y EA*\P such
that xy =0, and since Q is prime, it follows that y € Q. By 1.2, the I- -convexity of
A yields an r such that [x —y| =r(x -y). Because A is a subdirect product of totally
ordered integral domains and x A y =0, it follows easily that r *y =0, whence r*
€ P. Similarly, we have (1 -r*)x =0, and hence (1 - r*) € Q. Hence, 1 =rt+(1-

r*yEP +Q, so P +Q =A. So no maximal ideal of A can contain two distinct min-
imal prime ideals. Because each maximal ideal of a ring with identity element
must contain a minimal prime ideal, (a) holds.

(b) As noted above, A is a subdirect product of totally ordered integral do-
mains. Suppose p(t) = 37_ ga;t' €A[t], p(u) >0, and p(v) <0 for some u,v EA. By
the preceding remark, we may assume u A v =0. By hypothesis, for each minimal
prime ideal P, A/P is an IVT ring and so there is an wp €A such that 0 s wp =<
u v v and p(wp) € P. Now, let P* denote the maximal ideal of A containing P.
Since each maximal ideal contains a unique minimal prime ideal, there is, to each
minimal prime ideal P, an ep & P* such that p(wp)ep = 0. Since Max(A) is zero-
dimensional, we may assume that each ep is idempotent. Denoting {M € Max(A):
ep& M} by coh(ep), it is clear that {coh(ep): M €EMax(A)} is a cover of the com-
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pact space Max(A) by clopen sets. It has a finite subcover corresponding to idem-
potents which we will denote by ey, 3, ..., €,. By a routine induction, we may
assume that

(i) eej=0ifi=j,

(i) SF-rex=1,

(iii) p(wpe, = Ofor1sksn.

For 1= k= n,let p(t) = p(t) — ag + agey. By (iii), pwier) = p(wrer) = ag + agey,
= p(wy)ey = 0 for each k. Let w = 3¢ _ jwyey, then 0 s w < (u V v). By (i) and (ii),
p(w) =3} _1pi(wiep) = 0. Hence, the IVT holds in A, and this completes the proof
of the theorem. Q

As a consequence, we can give another type of an IVT ring and an IVT space.
An archimedean f-algebra is Dedekind-MacNeille complete if every subset with
an upper bound has a supremum. We let D(X) denote the set of all continuous
functions mapping X to the extended real numbers, which are real valued on a
dense subset of X. Then D(X) is a distributive lattice under pointwise supremum
and infimum, but in general not a group or a ring under pointwise operations. The
space X is extremely disconnected if every open set has an open closure. If X is
extremely disconnected (and in fact somewhat more generally), then D(X) is an
f-ring under pointwise operations. It is well known that every Dedekind-Mac-
Neille complete f-algebra is isomorphic to a convex f-subring of D(X) for some
compact, extremely disconnected space X. See [4] for details.

It is shown in [5, Section 2, Proposition 6] that if A = C(X) for some F-space
X, then (in different terminology) the intermediate value theorem holds for poly-
nomials in (A/P)[¢].

COROLLARY 2.9: (a) Every Dedekind-MacNeille complete f-algebra is an
IVT ring.

(b) If X is a strongly zero-dimensional F-space, thenC*(X) is an IVT ring. In
particular, every compact zero-dimensional F-space is an IVT space.

Proof: (a) In light of Proposition 2.1(a), and the fact that every Dedekind-
MacNeille complete f-algebra is isomorphic to a convex [-subring of D(X) for
some compact, extremely disconnected space X, it suffices to show that if X is
extremely disconnected, then D(X) is an IVT ring. So suppose X is extremely dis-
connected, p(£) = 37 oa;t' € D(X)[¢], and p() > 0,p(v) <0 for some u,v € D(X).
For any f €ED(X), let f1(R) = {x EX: f(x) ER}. Each f1(R) is a dense cozeroset
of X and every extremely disconnected space is an F-space. It follows that each
FU(R) is C*-embedded. Now let ¥ = (R) Nv"}(R) Nag (R) Na {(R) N -+
N a,,‘l('R). Then Y is a dense cozeroset of X. We may express Y as a countable
disjoint union of compact open subsets of X, say, Y = U, ¢ NK(n). Let py(t) €
C(Y)[#] (respectively, px(x(t) € C(K(n))[¢]) denote the polynomial obtained from
p(t) by restricting all coefficient functions to Y (respectively, K(n)). Also, let
up,v, denote the respective restrictions of u,v to K(n). Since K{(n) is compact and
extremely disconnected and hence zero-dimensional [7, p.160], the previous the-
orem implies K(n) is an IVT space. So for each n, there is w, € C(K(n)) such that
u, A vy s wys U, Vv, and pg(w,) = 0. Since the K(n) are clopen and Y =
U,enK(n), we may define z € C(Y) by z(y) = w,(y) when y € K(n). Now let z' be
the unique extension of z to all of X. Then p(z)=0andu Avsz'su Vv
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(b) Suppose X is a strongly zero-dimensional F-space and let A = C(X). By the
result mentioned just before the statement of the corollary, we know the IVT
holds in A /P for each minimal prime ideal P. Note that Max(A) =X =X if X is
compact and hence Max(A) is zero-dimensional. Thus, by the previous theorem,
XisanIVT space. QO

Because every archimedean f-algebra is order-densely embedded in its Dede-
kind-MacNeille completion, we have:

COROLLARY 2.10: If A is an archimedean f-algebra, then there is an
archimedean IVT ring B, which contains A as an f-subalgebra, and so that for each
0 <b €B, there is an a €A such that 0 <a < b. The IVT ring B can be taken to
be the Dedekind-MacNeille completion of A.

We say that a Tychonoff space X is a space of dense constancy, or a DC-space,
if for each f € C(X) and each open subset V of X on which fis not identically zero,
there is an open set W, contained in V so that f|y is constant and nonzero. An f-
algebra A is a DC-algebra if for each a EA there is a maximal set of pairwise dis-
joint elements {c;}; e and a set of real numbers {r;}; ysuch that ac; =ric;. For a
general treatment of DC-spaces and DC-algebras, we refer the reader to [3]. Itis
shown in 2.9 and 3.5 there that X is a DC-space if and only if C(X) is a DC-alge-
bra, and DC-algebras are both archimedean and have zero Jacobson radical.

If, in addition to being a DC-space, X also has the property that every nonemp-
ty open set contains a nonempty clopen set, then we say that X is a Specker space.
A relatively simple example of a Specker space is described next. Consider aN,
the one-point compactification of the natural numbers and [0,1], the unit interval
under the usual metric topology. Let X be the space obtained by refining the prod-
uct topology on aN x [0,1] by making all points of the form (n,£), with n €N, te
[0,1], open. Then X is a Specker space that is not zero-dimensional.

The space Q of rational numbers is zero-dimensional but not Specker. In gen-
eral, X is a Specker space if and only if BX is Specker, by 1.13(b) of [17].

Recall that an f-ring is said to be laterally complete if every subset of pairwise
disjoint elements has a supremum. Every f-algebra has a lateral completion,
which we will denote by AL. That is, an f-algebra A may be embedded in a later-
ally complete f-algebra AL so that no proper lattice-subalgebra of AL containing
A is laterally complete.

It is shown in [17] that a space X in which every nonempty open set contains
a nonempty clopen set, is a Specker space if and only if C(X) CSX)L, where S(X)
denotes the subalgebra generated by all of the idempotents of C(X). This is equiv-
alent to saying that for each nonzero f &€ C(X), there is a nonempty clopen set C
such that f. is both constant and nonzero. To give the reader a better perspective,
the elements of S(X) are those continuous real-valued functions defined on X
which can be expressed (uniquely) as a finite linear combination of characteristic
functions of pairwise disjoint clopen subsets of X. The positive elements of st
then are disjoint suprema of scalar multiples of characteristic functions of clopen
sets.

Our last theorem of this section gives one additional type of IVT ring.

THEOREM 2.11: If X is a Specker space, then S(X)L is an IVT ring.
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Proof: Letp(t)=3"_ Oaiti € S(X)-{¢], with p(x) >0, and p(v) <0, for some
u,v € S(X)L. Suppose S; (respectively, S,, S,) denotes a maximal family of pair-
wise disjoint clopen sets, with a; (respectively, u,v) constant on each. Now let S
denote the collection of all sets of the form WoNWy N --- NW,NW,NW,, where
W;E€S;, W, ES,, and W, € S,. Note that the members of § are pairwise disjoint
clopen sets, and that S is maximal with respect to this property. For each W €35,
let py(t) € W[¢] denote the polynomial obtained from p(f) by restricting all coef-
ficient functions to W. Let uy,vy denote the functions obtained by restricting u,v
to W. Then py{uy) >0, py{vy) <0 and a;, u, v are all constant on W. So py?) is
effectively a real polynomial, which by the classical Intermediate Value Theorem
has a root zy between the minimum and maximum of the values of uy and vy.
Now let wy € S(X) be the function defined by wy(x) = zy if x € W and wy, =0
otherwise. Note that py{wy) =0. Now let w = VWES ww- Thenu Avswsu Vv
and p(w)=0. QO

3. IVT Spaces

It is an open question as to whether the converse of Corollary 2.9(b) holds; that
is, whether a compact IVT space must be zero-dimensional. In fact, it is not
known whether there exists any connected IVT space. In this section we show that
the subspaces of any connected IVT space would have to have a certain discon-
nection property. To be more specific, we need the following definitions.

DEFINITIONS 3.1: A compact connected Hausdorff space is called a continu-
um; those with more than one point are called nondegenerate. If a continuum is
the union of two proper subcontinua, it is called decomposable; otherwise it is
called indecomposable. If every closed connected subspace of a continuum is in-
decomposable, it is called hereditarily indecomposable.

For more background, see [8], [12], [19], and [22]. We will show that any con-
tinuum contained in a compact IVT space is hereditarily indecomposable, and
give examples of compact connected F-spaces that fail to be IVT spaces.

THEOREM 3.2: Every continuum contained in a compact IVT space is hered-
itarily indecomposable.

Proof: Suppose Y is a decomposable continuum contained in a compact IVT
space X. Then Y = Y; UY,, where each Y; is a proper subcontinuum. Pick y; €
Y;\Y; and y, EY,\Y;. There is a cozeroset U containing y; such that Ci(U) C X\Y,.
Pick cozerosets V; (1 =i < 3) such that:

y, EV1C CI(V) C V,C CI(V) SV CX\Yy. 6y

For 1 < i< 3, choose f; € C(X)* such that:
(a) cozf;=U, and f; s 1 = fi(y1),
(b) f25.5=£[V,] and f[X\V3] =0,
(c) fy= .25=F3[Vq] and f3[X\V;] = 0.
Let f=2.5 + f; - f» - f3. The following facts are easily verified:
(i) 1.75<f=<3.5=f(yy) and f=2.50n Yy,
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(ii) f(y2) = 1.75 and f= 2.5 on Yy,
(iii) f[Y;NY,] = 2.5.
Finally, choose h € C(X)* such that Z(h) = {x EX: 2= f(x) s 3} and k= 1.

Consider the polynomial p(£) € C(X)[#] given by: p() = (¢ ~ 1)(t - 2)(¢ - 3)[(¢ -
)%+ k[t~ (f-1))% + h]. Note that p(f) = (f - D)(f - 2)(f - 3)h(h + 1) >0. For,
if x €f1[1.75, 2), then p(f)(x) > 0. If x €f71[2, 3], then since h(x) = 0, p(f)(x) =
0, while if x €f71(3, 3.5], then p(f)(x) > 0. Similarly, p(f-1) = (f-2)(f-3)(f
~4)(h + 1)k <0. Because X is an IVT space, there isa w € C(X) such that p(w)
= 0and f-1= ws f It is routine to verify each of the following assertions:

(iv) If3 < f(x) s 3.5, then 2 < w(x) s 3.5, so w(x) = 3.

(v) Iff(x) = 3,then 2 s w(x)=<3,s0w(x) = 2or3.

(vi) If 2 <f(x) <3, then 1 <w(x) <3, so w(x) =f(x) or f(x)-1or2.

(vii) If f(x) = 2,then1 = w(x) s 2,sow(x) = lor2.

(viii)If 1.75 s f(x) < 2, then .75 s w(x) < 2, so w(x) = 1. Now letCq =
{x € Yy: w(x) > 2}. Then Cy is open in ¥;. But also, Cy = {x €Yy:
w(x) = f(x) A 3}, so Cy is clopen in the connected set Y;. Since y; €
Cl’ it follows that Cl = Yl'

Let C, = {x €Y, : w(x) <2}. Then C; is open in the connected set Y,, and is
nonempty since it contains y,. Also, C, = {x EY: w(x) = (f(x) - 1HVvi},soCy
= Y,. Because Y is connected and Y1 NY; is nonempty, we have on this latter set,
w(x) = f(x) A 3 =(f(x) - 1) v 1. By (iii), f(x) =2.5 on ¥; N Yy, so w(x) =2.5 and
1.5. This contradiction completes the proof of the theorem. {1

As is noted in [12, Section 48, V, Theorem 2], a continuum is indecomposable
if and only if no proper subcontinuum has nonempty interior. Hence we have:

COROLLARY 3.3: No component of a compact IVT space contains a proper
subcontinuum with nonempty interior.

Next we give examples of compact connected F-spaces that fail to be IVT
spaces. First, we abbreviate BX\X by X*, and the subspace [0,) of R by H. We
will make use of the following results due to R.G. Woods and D.P. Bellamy; see

[22, 9.13 and 9.33] for more explicit references.
(a) H* is an F-space and an indecomposable continuum that is not hereditar-

ily indecomposable.

(b) If n > 1, then (R")* is an F-space and a decomposable continuum.
Recall also that if X is locally compact and o-compact, then X* is an F-space; see
[7, 14.27].

EXAMPLES 3.4: H* and (R")* are compact connected F-spaces that fail to be
IVT.

We will call a space X nice if each of its nondegenerate components contains
a decomposable continuum. Then we have:

COROLLARY 3.5: Every nice compact IVT space is zero-dimensional.

As the following example shows, there are compact connected F-spaces that
fail to be nice. Whether there are compact IVT spaces that are not nice remains

an open question.
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EXAMPLE 3.6: Theorem 7 of [21] says that if X is the union of countably
many disjoint hereditarily indecomposable continua, then every component of X*
is hereditarily indecomposable and X* contains a nondegenerate hereditarily in-
decomposable continuum. Also, because X is locally compact and o-compact, X*
is an F-space. As noted in the notes in [8, Section 5], it follows easily from this
that if Y is the union of a discrete collection of pseudoarcs in the plane then Y* is
an hereditarily indecomposable subcontinuum of (R?)*. (See [19] for the defini-
tion of a pseudoarc.)

4. ALTERNATIVE VERSIONS OF THE INTERMEDIATE
VALUE THEOREM

In this section, we look at two variations on IVT spaces and rings.

DEFINITIONS 4.1:  Suppose A is a commutative f-ring with identity element,
let A[¢] denote the ring of polynomials with coefficients in A, and let G denote a
subset of A[¢] closed under translation by elements of A.

(1) If, for each p(#) € G for which p(u)p(v) = 0 for some u,v €A, thereisaw
€A such thatu A vswsu Vvand p(w) = 0, we say that the strong inter-
mediate value theorem holds for G. In case G = A[t], then A is called a
strong IVT ring.

(2) If for some Tychonoff space X, C(X) is a strong IVT ring, then X is called
a strong IVT space.

It is easy to see that if an f-ring satisfies the strong intermediate value theorem
for a certain subset G of polynomials, then it also satisfies the intermediate value
theorem for G. In particular, every strong IVT ring (space) is an IVT ring (space).
We will see that in general, the intermediate value theorem for a subset G of poly-
nomials and the strong intermediate value theorem for G are not equivalent. For
linear polynomials, however, they are.

THEOREM 4.2: Suppose A is a commutative semiprime f-ring with identity el-
ement. In A, the intermediate value theorem holds for linear polynomials if and
only if the strong intermediate value theorem holds for linear polynomials.

Proof: We need only show that if the IVT for linear polynomials holds, then
the strong IVT for linear polynomials holds. So suppose the IVT for linear poly-
nomials holds in A, p(¢) = a + bt €EA[t], and p(u)p(v) =0 for some u,v €EA. As noted
in Remark 2.8, we may assume that u A v=0.

By 1.2, there is an r €A such that b=r|b|and |r|< 1. If f=r*(u Vv) and g =
r~(u V v), then p(f)p(g) = a® +ab(r*(u vV v) +r (u vV v)) = a? +ab|r|(uVv)=2a®+
ab(u v v) = p(u)p(v). Hence:

p(Hp(g) = 0. *)

We will show next that:

p(H=0andp(g)< 0. **
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By 1.1, A is a subdirect product of totally ordered prime rings A, for some in-
dex set X. For any a €A, we let a, denote the projection of a in A,. If b, 20, then
ry =0, 50 p(f)y = ay + byry"(u, V v,) and p(g), = a,. Thus, if p(f), <0, then a, =
p(g), <0 as well, contrary to (*). If b, <0, then r=0,r," =1, p(f)y=a,and p(g),
=a, +byu, vV v,). Hence, if p(f), <0, this inequality holds for p(g), as well, con-
trary to (*). It follows that p(f) =0 and a symmetric argument shows that p(g) s
0 and (**) holds. Since the IVT for linear polynomials holds, there is awE&A such
that p(w)=0and0=fA gs ws fVg=|r[(uVVv)suVvv. Q

Recall that a Lindeléf space is one for which every open cover has a countable
subcover. For a Lindeldf space, we are able to give a characterization of spaces
in which the strong IVT holds for linear and monic quadratic polynomials.

THEOREM 4.3: An F-space is strongly zero-dimensional if and only if it sat-
isfies the IVT for linear and the strong IVT for monic quadratic polynomials.

Proof: = By Theorem 2.2, the IVT holds for linear polynomials.

Next we show that the strong IVT for monic quadratic polynomials holds in
C(X). Suppose p(f) € C(X)[¢] and u,v € C(X) such that p(u)p(v) s 0. We may, by
completing the square, assume p(¢) is of the form p(® = 2 - f for some fEA. We
may also assume that f= 0. Now p(u)p(v) = (u2 —f)(v2 -N= u2v? - f? —fut +f%<
0.500 = ut? + f2 < f(u?+ v?). It follows that f= 0, and there isa b EA* such
that f = b2 Thus p(f) = * - b% Let Uy = {x EX: b(x) > u(x) V v(x)} and let U =
{x €EX: -b(x) <u(x) A v(x) or —b(x) > u(x) V v(x)}. Then Uy and U, are disjoint
cozerosets of the F-space X, and hence there are disjoint zerosets Z,Z, such that
U,C Z; and U, C Z,. Because X is strongly zero-dimensional, there is a clopen
set W such that Z; C W and Z, "\ W = (see [7, Chapter 16]). Define w € C(X) by
letting w(x) = -b if x € W and w(x) = b otherwise. Then u A v=w=su Vv and
pw)=0.

< Assume X is an F-space which satisfies the IVT for linear and the strong
IVT for monic quadratic polynomials. By [7, Theorem 16.17] it suffices to show
that any two disjoint zerosets are separated by a partition. So suppose Z; and Z,
are disjoint zerosets. Choose fj, f, € C(X)* such that f}, f, = 1, Z(f1) = Zq and
2(fy) = Zy Letf = 3+ fy-dpand let p(t) = (t-3)(¢ - 1). Then p(Hp(f~2) =
F-D(f- 3)%(f-5) s Osince2 s f =< 4. By the strong IVT for monic quadratic
polynomials, there is a w € C(X) such that f-2 = w = fand p(w) = 0. Then if
x EZy, w(x) = 1 and if x EZ;, w(x) = 3, elsewhere w(x) = 1or 3. Hence {x EX
: w(x) < 2} is a clopen set containing Zy and disjoint from Z,. So X is zero-
dimensional. (1

It is now easy to see that the IVT for monic quadratic polynomials is not equiv-
alent to the strong IVT for monic quadratic polynomials. Indeed, by Theorem
2.3(b), for any space X, the IVT for monic quadratic polynomials holds, whereas,
by the previous theorem, the strong IVT for monic quadratic polynomials does
not hold for infinite connected F-spaces.

It follows immediately from the previous theorem that:

COROLLARY 4.4: A compact zero-dimensional F-space is a strong IVT space
for linear and monic quadratic polynomials.
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We now turn to a second variation on the definition of the intermediate value
theorem holding for a subset of an f-ring.

DEFINITIONS 4.5: Suppose A is a commutative f-ring with identity element,
let A[¢] denote the ring of polynomials with coefficients in A, and let G denote a
subset of A[t], closed under translation by elements of A.

(1) If, for each p(f) €G for which p(u) >0 and p(v) <0 for some u,v €A, there
is a finite subset {wy, wy, ..., w,,} CA such thatu A vsw; s u Vv for
each i and p(w{)p(wy) -+ p(w,) = 0, we say that the weak intermediate
value theorem (weak IVT) holds for G. In case G =A[t], then A is called a
weak IVT ring.

(2) If for some Tychonoff space X, C(X) is a weak IVT ring, then X is called a
weak IVT space.

Suppose n is a positive integer. An f-ring is said to have rank n if there are no
more than n minimal prime ideals contained in each maximal [-ideal and some
maximal [-ideal contains » minimal prime ideals, and is said to have finite rank
if it has rank n for some positive integer n. A valuation domain is a domain in
which for any two elements, one is a multiple of the other and an f-ring is called
an SV-ring if A/P is a valuation domain for each prime ideal P of A. Note that any
1-convex f-ring has rank I and is an SV-ring. Any uniformly complete SV-ring
has finite rank, as is shown in [11, 4.1]. It is noted in [11] that an f-ring A with
identity element and bounded inversion is an SV-ring if and only if for any (min-
imal) prime ideal P of A, A/P is 1-convex. For f-rings with finite rank and bound-
ed inversion, the weak IVT for linear polynomials has a characterization
analogous to that of the IVT for linear polynomials.

If M is a maximal ideal of a commutative semiprime ring A with identity, let
Oy denote the set of a €A for which there is some b & M such that ab = 0. It is
well known that Oy, is the intersection of all the minimal prime ideals of A that
are contained in M.

THEOREM 4.6: Suppose A is a commutative semiprime f-ring with identity el-
ement and bounded inversion.
(a) If the weak IVT for linear polynomials holds, then A is an SV-ring.
(b) If A has finite rank and is an SV ring, then the weak IVT for linear poly-
nomials holds.

Proof: (a): Suppose 0 s a+ P s b+ Pin A/P for some prime ideal P of A.
Then there is pq, p, EP* such that0 < a+ py s b+ py. Letp() = a+ py+ (b
+ p)t EA[t] . Then p(0) = a+ p; 20 and p(-1) = a+ p;-(b+ p2) s 0. Because
A is weak IVT for linear polynomials, there is a finite subset {wy, wy, ..., w,} C
A such that -1 s w; = 0 for each i and p(wy)p(w;) -+ p(w,) = 0. Since P is
prime, p(w;) € P for some i. Hence, a + bw; € P. Thus a = -w;b modP and AlP
is 1-convex. So A is an SV-ring.

(b) Suppose p(t) =a + bt €A[t], p(u) >0, and p(v) <0. Since A is closed under
bounded inversion, every maximal ideal of A is an {-ideal. We will show next that:

if M is a maximal ideal of A, there is a finite subset {y{,y5,...,yx}

* %
CAsuchthatu Avsy;s uVvandzy=p(y)p() - pOr) EOpm ")
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Now by hypothesis, M contains only finitely many minimal prime ideals {Py, ...,
P}.Forls is k letp(ty=(a+P)+(b+P)€E (A/P)I¢] and note that pu) 20
and piv) = 0 in A/P;. For each i, A/P; is 1-convex since A is an SV-ring. By The-
orem 2.2, there are for 1<isk, y; EA withu Avsy;< uVvmodP;and p(y;) =
0 mod P;. For each i, lety;/ =(y; V (4« Av) A (e Vv)). Thenu Av=<y/<uVvand
2= p(1)P(y2) -+ P(yY') € Nf_ 1Py = Oy Hence (**) holds.

For each M € Max(A), there is a zy/ & M such that zy/ > 0 and zpzy,' = 0. Letting
coh(zy) = {M € Max(A): z)/ & M}, we see that {coh(z/): M € Max(A)} is an
open cover of the compact space Max(A). So there is a finite set {My,..., M} C
Max(A) such that Max(A) = U jcoh(zy;). Then z = . 12y, is in no maximal
i)dealuofA and hence is invertible. But zzy, zpr, *** 2y, = 0 and so zpp, 2y, **" 21, =

An argument almost identical to the proof of part (b) of the previous theorem
shows the following.

THEOREM 4.7: Suppose A is a semiprime f-ring with identity element. If A is
1-convex and A /P is an IVT ring for each minimal prime ideal of P, then A is a
weak IVT ring.

NOTE ADDED IN PROOF, MARCH 14, 1996: A. Dow and K.P. Hart announce that
a resricted form of the IVT, namely for monic polynomials that can be written as

-1~ £)

characterizes hereditary indecomposability for compact F-spaces.
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ABSTRACT: Forty years ago A.D. Wallace asked whether a countably compact, cancella-
tive topological semigroup is a topological group.

We will prove that for various types of spaces Wallace’s problem has an affirmative answer.
This is done by showing that the most promising candidates for counterexamples do not admit
cancellative topological semigroup structures.

1, INTRODUCTION

In 1955, Wallace [19] asked whether every countably compact, cancellative to-
pological semigroup is a topological group. In 1994, Robbie and Svetlichny gave
a counterexample under the continuum hypothesis. The construction can be done
under Martin’s Axiom as well [18]. This still leaves open the question whether
an affirmative answer to Wallace’s question is consistent in ZFC and for what
type of spaces is there a positive answer.

On the affirmative side, in 1952, Numakura [12] showed that every compact,
cancellative topological semigroup is a topological group. Ellis [5], [6] showed
in 1957 that a locally compact group G with separately continuous multiplication
(i.e., the multiplication restricted to {p} x G and to G x {p} are continuous for all
p €G) is a topological group. Brand [1] and Pfister [13] proved that Ellis’ result
remains true for completely regular spaces with continuous multiplication if ei-
ther “Cech complete” or “locally countably compact” replaces “locally compact.”
In 1972 Mukherjea and Tserpes [11] proved that every countably compact, can-
cellative topological semigroup which is first countable is a topological group.
D.L. Grant [9] in 1993 extended this result for the completely regular case by
showing that every sequentially compact, cancellative topological semigroup is a
topological group.
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We will give further results on the affirmative side of Wallace’s problem. For
example a Baire space is a topological group if it is a torsion group with contin-
uous multiplication. Also, no subset of N which is locally compact, countably
compact and infinite can admit a cancellative topological semigroup structure. In
addition we look at cancellative topological semigroups either with a countably
compact square or where the monothetic subsemigroups are groups.

Besides the consistency of Wallace’s problem, related questions arise. Watson
[9] asked whether a pseudocompact, first countable, cancellative topological
semigroup is a topological group. Using convergence properties of cancellative
topological semigroups, we show that the obvious types of candidates for coun-
terexamples to Watson’s question do not admit a cancellative topological semi-
group structure. For example, the y spaces of Isbell and certain expansions of a
compact first countable topology do not admit such a structure. We also show that
variations of the Tychonoff plank (which are pseudocompact, not countably com-
pact, and not first countable) do not admit a cancellative topological semigroup
structure.

Note that “cancellative” is essential since for any space X and a fixed p €X,
the multiplication xy = p for all x,y €X gives X a topological semigroup structure.

In this paper all spaces are Hausdorff (except in the hypothesis of Lemma 3.1,
which is clear from the context). We follow the notation in [4] for topological
semigroups and [7] for topological spaces.

A paratopological group is a topological semigroup which is algebraically a
group. If S is a semigroup and x €S, then 0(x) = {x, x2, X3, ...} is the Abelian sub-
semigroup generated by x, and if § is topological semigroup then T'(x) = cl(6(x))
(cl(A) denotes the closure of A for all A CS) is also a subsemigroup of §. S is
called monothetic if S = I'(p) for some p € S. Let N denote the natural numbers.
As a topological space, give N the discrete topology. Let BX denote the Stone-
Cech compactification of a space X.

2. TORSION GROUPS AND COUNTABLY COMPACT SEMIGROUPS

A group G is a torsion group if 8(x) is finite for all x €G.

THEOREM 2.1: Let G be a paratopological torsion group which is a Baire
space. Then G is a topological group.

Proof: We only need to show that the inverse function is continuous. Solet F,
= {x EG:x" = e} for every n € N. Then each F,, is closed and Upen Fn = G. Since
G is a Baire space, some F; has nonempty interior. Now xk = e for each x € Fy. So
x~1 = x*=1for all x € F;. Since multiplication is continuous, we have that the func-
tion x — x*~1 is continuous on F,. Since F; has a nonempty interior, the inverse
function is continuous at some point of G. Thus, the inverse function is continuous
at every point of G (since, if the inverse function is continuous at g € G and
{xq}oca is a net converging to x € G, then {xa‘l}a €A converges to ygl=x1
where y € G such thatxy = g). Q

LEMMA 2.2: [4, Corollary 3.3] Let S = I'(p) be a compact monothetic semi-
group. If p is not isolated, then § is a topological group.
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CONJECTURE 2.3:1 A countably compact subsemigroup of a compact mono-
thetic group is a group.

THEOREM 2.4: Let S be a completely regular, countably compact, cancella-
tive topological semigroup such that $ x § is pseudocompact. Then S is a topolog-
ical group provided that Conjecture 2.3 is true and 6(p) is dense in itself or finite
for each p €S.

Proof: By Glicksberg’s Theorem, (S x §) .= BS x BS. Now the multiplication
(x,y) ~>xy from S x § to BS extends to a continuous function from (S x §) to pS.
Since B(S x S) = BS x BS we have that the associative multiplication on § extends
continuously to an associative multiplication on pS. Hence, BS is a compact to-
pological semigroup under this multiplication.

Let x €S . If 8(x) is finite, then 8(x) is a compact, monothetic, topological
group. So assume 8(x) is infinite. Then Igg(x) (the closure in BS of 6(x)) is a com-
pact semigroup. So by the hypothesis and Lemma 2.2, Tgg(x) is a compact, mono-
thetic, topological group. In any case since F = § N Tgg(x) is a countably compact
subsemigroup of Tgg(x), F is a group by Conjecture 2.3. Hence, the identity u of
Fis in S. Since S is a cancellative semigroup and u is an idempotent (i.e., u? =
u), u is the identity of S. Furthermore, the inverse of x in F is in §. Since x is ar-
bitrary, we have that § is a countably compact, paratopological group. So S is
also a group. So by Ellis’ theorem [5], [6] BS is a topological group. Hence, the
inverse function is continuous. [}

NOTE 2.5: In [8] D.L. Grant proved the following results complementing
Theorem 2.4. Let G be a pseudocompact, completely regular paratopological
group. Then G is a topological group if and only if G x G is pseudocompact. Also,
in [15] Reznichenko extended Grant’s result showing that a pseudocompact, com-
pletely regular paratopological group is a topological group. In light of
Reznichenko’s result the referee asked whether in Theorem 2.4 the hypothesis
could be dropped. The authors came close to proving this and feel it can be done.

PROPOSITION 2.6: Let S be a cancellative (countably compact) topological
semigroup. If every monothetic subsemigroup of S is a group, then § is a (topo-
logical) group. Hence, any counterexample to Wallace’s problem contains a
monothetic counterexample.

Proof: Letx€S. As in the proof of Theorem 2.4, since by hypothesis I'(x) is
a group, the identity of I'(x) is the identity of S, and x1ET(x)CS. SoSisa
paratopological group. Hence, if § is countably compact, then S is a topological
group by [1] and [13]. QO

LEMMA 2.7: [4, Theorem 3.2] The set of cluster points of a compact mono-
thetic semigroup form a group.

LEMMA 2.8: [2] The closure in BN of any countable subset is extremely dis-
connected.

IRobbie recently pointed out that under CH, the example in [16] can be used to con-
struct a counterexample to Conjecture 2.3.
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LEMMA 2.9: [14] No locally compact, nondiscrete, topological group is ex-
tremely disconnected.

THEOREM 2.10: Let X be a locally compact, countably compact, infinite sub-
set of BN. Then X does not admit a cancellative topological semigroup structure.

Proof: Suppose that X had a cancellative topological semigroup structure.
Let b €X, and let closures be taken in X. Since I'(d) is locally compact and count-
ably compact, its square is countably compact, (e.g., see [7]). Then as in Theorem
2.4, Glicksberg’s theorem extends the multiplication on I'(d) to a continuous as-
sociative multiplication on B(I'(b)).

First suppose that 8(b) were infinite and b™ were a boundary point of 8(b) for
some m € N. Then there is a net {"0} 4 converging to b™ where each n, EN.
Hence, b/*"a = p/p"a — pJ*™ and so all but at most finitely many elements of
8(b) are cluster points of 8(b). Hence, the set D of cluster points of f(I'(b)) con-
sists of all but at most finitely many elements of B(I'(b)). Now B(I'(b)) is extreme-
ly disconnected since by Lemma 2.8 TI'(b) is. Therefore, D is extremely
disconnected, infinite, and compact. But D is a topological group by Lemma 2.7.
This contradicts Lemma 2.9.

Now suppose that 6(b) were infinite and discrete. Then the closure in BN of
8(b) is homeomorphic to N. Hence, the set of cluster points of B(I'(b)) is homeo-
morphic to the nonhomogeneous space BN — N. This contradicts Lemma 2.7.

So 8(b) is finite for each b € X. Hence, X is a paratopological group and there-
fore a topological group by [5], [6]. Let A be a countably infinite subset of X, and
G be the closure of the subgroup of X generated by G. Then G is separable and
hence extremely disconnected by Lemma 2.8. Again, this contradicts Lemma 2.9
since G is a nondiscrete, locally compact, topological group. 0O

The last paragraph of the proof of Theorem 2.10 also proves the following.

PROPOSITION 2.11: If X is a locally compact subset of BN and p € X such that
p is a cluster point of a countable subset of X, then X cannot be a topological

group.
QUESTION 2.12: Are there any countably compact infinite subsets of BN that

admit a cancellative topological semigroup structure? What if “not discrete” re-
places “countably compact”?

3. PSEUDOCOMPACT, NOT COUNTABLY COMPACT SPACES

In this section we investigate Watson’s question [9]: Is every pseudocompact,
first countable, cancellative topological semigroup a topological group? Since
the question has an affirmative answer for countably compact spaces [11], we
look at spaces which are pseudocompact but not countably compact. Three fun-
damental types of such spaces are the W spaces of Isbell, an expansion of the to-
pology of a compact space, and variation of the Tychonoff plank. It turns out that
none of them admit a cancellative topological semigroup structure.

Let (X,T) be a topological space and D CX. A simple extension of tby D is the
topology ¥ of X generated by tU {D}. Thus, a subset Uof X'is a t;-neighborhood
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of p where p € X iff U is a t-neighborhood of porpEWND C U for some W €
1. Let S be a topological space with a multiplication m: § xS — S which makes §
algebraically a semigroup. If the restrictions m|({p} x S) and m|(S x {p}) are con-
tinuous for all p €S, then m is called a separately continuous multiplication.

LEMMA 3.1: (See [3, Theorem 1.6].) Every T topological group is Hausdorff
and completely regular.

LEMMA 3.2: Let S be a compact space with a separately continuous multipli-
cation that makes S algebraically a semigroup. Then S contains an idempotent.

Proof: The proof is just the proof of Theorem 1.8 in [4]. This theorem states
that a compact topological semigroup S contains an idempotent. The only multi-
plication used in the proof and the results on which the proof rely are of the form
pT and Tp for p €S and T CS. So only separately continuous multiplication is
needed. Q

THEOREM 3.3: Let (X,T) be a compact space, D be a dense and codense subset
of X, and 7; be the simple extension of T by D. Then (X,t;) is Hausdorff,
pseudocompact, not regular, and does not admit a cancellative topological semi-
group structure. Moreover, if (X,t) is first countable, then (X,ty) is first countable
and not countably compact.

Proof: It is routine to verify that if fis a function from X to the real line R,
then fis continuous in the topology T if and only if fis continuous in ;. So X,ty)
is pseudocompact. Since there are no disjoint t;-open sets separating p and X -D
for p €D, (X,1y) is not regular. The last remark of the theorem and the failure of
countable compactness of (X,T;) follow easily.

Suppose (X, Ty) were a cancellative topological semigroup. For p € X, define
the functions [, and r, from X to X by [,(x) = px and rp(x) = xp for all x €EX. Then
Ly (X,7y) — (X,7;) is continuous. Now if f: (X,t) — R is continuous, then
f: (X,T) = R is continuous. Hence, f o [,: (X,7;) = R and similarly f o [, (X,7)
— R are continuous for all p €X. Since this is true for all f€ C(X,T) (the collection
of the real valued continuous functions on (X,t)) and (X,t) is compact, we get that

Ay (X)) > (X,7) is continuous for all p € X. Similarly r,: (X,T) - (X,7) is con-
tinuous for p EX. That is , the multiplication on (X,T) is separately continuous.

Let p €X and T(p) be the T closure of 8(p). Then with respect to the multipli-
cation on X, the semigroup T(p) has an idempotent by Lemma 3.2. Since X is al-
gebraically a cancellative semigroup, this idempotent is identity e of X. If e = p"
for n €N, then p~! is e or p"~1 . If e € (p), then there is a net {p"*},e4 With each
ng an integer greater than 1 and p"® — e in (X,7). Let ko =ng — 1. Then the net
{p*o} 4 has a subnet {pkaﬁ}ﬁEB which converges to some u in the compact space
(X,t). Then p -pk“ﬂ —pu and p -pkaﬁ =p"ep —> e. Hence pu = e. Similarly, up =e.
That is, u = p‘1 . Since p is arbitrary, X is algebraically a group. Therefore, by
Ellis’ result [5], [6] , (X,T) is a topological group.

We claim that the inverse function on (X,7%;) is continuous. To see this fix a
point p €X, such that g =p~1 €X -D. Let U be a ty-neighborhood of g and hence
a T-neighborhood of g. Since the inverse function is continuous on (X,T) there is
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a t-open neighborhood V of p such that v-1CU. Since 1C1; it follows that V €1;.
Hence, the inverse function on (X,t{) is continuous at p. Now let x € X
and {x,},ec4 be a netin (X,T) converging to x. Then px~lx, = pin (X,14); so
xm'lxp‘1 — p~1in (X,7;) by the continuity of the inverse function at p. Hence,
xof1 - x1ipn (X, t,), that is, the inverse function on (X, t;) is continuous.

So we get that (X, ) is a topological group which is Hausdorff and not regular.
This contradicts Lemma 3.1. Therefore, (X, ;) does not admit a topological sem-
igroup structure. O

NOTE 3.4: As in the proof of Theorem 3.3, nets often play a key role in proofs
concerning topological semigroups. We want to consider convergence properties
at a point, e.g., the type of nets that can converge to a point. So we define two
nets {x,}qea and {yo}sep to be of the same net type if there is an order-preserv-
ing isomorphism o: A ~» D (i.e., g is a bijection and o(a) < o(p) if and only if
<P for all o, p EA) such that yuy) = yo(p) iff x5 = xp for all o, B €A. Hence, given
a cancellative topological semigroup S, elements x and y of S, and a net converg-
ing to x, there are nets of the same type converging to xy and yx. In particular if
S has an identity element e, for any net converging to e there are nets of the same
type converging to each element of S. Also, for example, in § an isolated point
cannot have a nonisolated factor, a point with a countable neighborhood base can-
not have a factor that is the limit of an uncountable transfinite sequence which is
not eventually constant, and a point which is not the limit of a (nontrivial, i.e.,
not eventually constant) sequence cannot have a factor that is.

NOTE 3.5: A family F of subsets of a set is almost disjoint if o N B is finite
for all o, P EF. Ay space of Isbell (see [10]) is a set X = N U D such that: (1) D
is a maximal almost disjoint family of infinite subsets of N, (2) the points of N
are isolated, and (3) if a €D, then a neighborhood base of a in X consists of all
sets of the form {a} U B where B C a and o - B is finite. Any W space is locally
compact, Hausdorff, first countable, pseudocompact, and not countably compact.
Each of its discrete clopen subsets is finite, N is dense in X, and D is discrete and
closed.

THEOREM 3.6: Let X =Y U Z be a space such that Y and Z are nonempty dis-
crete subsets of X, and Y is dense and open in X. Then X does not admit a cancel-
lative topological semigroup structure. In particular, no W space admits a
cancellative topological semigroup structure.

Proof: Suppose X did admit a cancellative topological semigroup structure.
For all x EX and z € Z, xz € Z by Note 3.4 since the points of Y are isolated while
the points of Z are not. Now fix z €Z. Since Y is dense in X there is a net {y,}qea
in Y such that y, = z. So {yqz}qes is a (not eventually constant) net in Z converg-
ing to 22 €Z, contradicting Z being discrete. O

Using Note 3.4, the proof of Theorem 3.6 translates into a proof of the follow-
ing result.

PROPOSITION 3.7: Let X = Y UZ be a space such that there exists zEZ and a
net in Y converging to z such that no net of this type converges to any point of ¥,
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and no net of this type contained in Z converges to any point of Z. Then X does
not admit a topological semigroup structure.

DEFINITION 3.8: Let y be an ordinal and consider the ordinal y +1 with the
usual order topology. So y +1 is a compact space. For all o €y let X, be a topo-
logical space, and pg # g4€ X,,- Let Y be the disjoint union (y + 1) ®(® {X,: @ €
v}) and give Y the direct sum topology of the spaces y + 1 and the X’s. Let X be
the quotient space obtained by identifying p, with a and g, with o+ 1 forall a €
y. Call X a long line-like space using y and the spaces Xj,.

Recall that w is the first infinite ordinal and w; is the first uncountable ordinal.

NOTE 3.9: y=wy, each Xy =[0,1], p, =0 and g, = 1, then the long-line like
space obtained from wj, and the spaces X, is the usual long line.

THEOREM 3.10: Let y be an ordinal of uncountable cofinality and X, be a
compact first countable space for each a Ey. Let Y= (X x (0 +1)) - {{y, w)} where
X is a long-line like space using y and the X,,’s. Then Y is pseudocompact, locally
compact, and not countably compact. Moreover, Y does not admit a cancellative
topological semigroup structure.

Proof: The proof that Y is pseudocompact, locally compact, and not countably
compact is analogous to the proof (e.g., see [10] and [17]) that the Tychonoff
plank has those properties.

Now suppose that Y admits a cancellative topological semigroup structure.
Then X - {y} is sequentially compact since X is sequentially compact and has un-
countable cofinality. Hence, (X - {y}) x (w + 1) is sequentially compact as is its
subspace Y= {p EY: p is the limit of a sequence in Y - {p}}. Note that Y = ]
since (w,0) € Y. (In fact, Yy is dense in the set of nonisolated points of Y.)

Let x €Y and y € Yy, By Note 3.4, xy is a limit of a sequence in Y - {xy} since
y is a limit of a sequence in Y - {y}. That is xy €Y. Therefore, Ypis a sequentially
compact subsemigroup of Y. So by Grant’s result [9], Yy is a topological group.

Let e be the identity element of Y. Since Y is cancellative, e is the identity of
Y. Then by the last paragraph, xe =x € Y for all x EX - Y. This is a contradiction
since {y,0) € X - Y = @. Therefore, Y does not admit a cancellative topological
semigroup structure. (O

Note that the proof of Theorem 3.10 also goes through if each X, were only
sequentially compact. That is, this modified Y would be pseudocompact but not
countably compact and would not admit a cancellative topological semigroup
structure. However, this modified Y would not be locally compact if some X,

were not.

QUESTION 3.11: In the view of the Tychonoff plank type space considered in
Theorem 3.10, it is natural to ask the following question:

Let S be a sequentially compact space and p €S be the limit of a nontrivial
sequence in X. Does the pseudocompact, not countably compact space Y= (X x
S) - {{y,p)} admit a cancellative topological semigroup structure, where X is a
long-line like space using an ordinal y of uncountable cofinality and compact first
countable spaces X, for each a €7?
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Note that the proof of Theorem 3.10 breaks down if there are nontrivial con-
vergent sequences in {y} x (S - {p}).

We can solve this problem in certain cases. For example let Y’ = ((wq + 1) x
[0,1]) = {(wq, 1)}. Then Y’ does not admit a cancellative topological semigroup
structure by Proposition 3.7 (where the partition of ¥" for 3.7 is {(wy x[0,1], {w¢}
x [0,1D)D).

More generally, if R is sequentially compact containing a copy of y + 1, does
(R xS) - {{y, p)} admit a cancellative topological semigroup structure? How about
the case where y + 1 is replaced by a cofinal subset containing y and all smaller
ordinals of countable cofinality?
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ABSTRACT: A general method of factorization in introduced. It consists of, first, the weak-
ening of the concept of an open base or that of a network, and, second, the restoration to the
weakened concept its full vigor. Thus, every time, we have the restorative + the weakened con-
cept = the original concept. The workings of the method are exceedingly simple. Its field of ap-
plications goes well beyond metrizability. Results include an improvement of Heath and Aull
on the developability and metrizability of semistratifiable spaces. We also have that every Na-
gata space has a metrizable dense subset.

In spite of the title, our discourse here does not limit itself to the factorization
of metrizability. Rather, it presents to the readers a method that is applicable to
the factorization of a large number of properties, of which metrizability is but the
most prominent example. The method of factorization consists of, first, the weak-
ening of the concept of an open base or that of a network, and, second, the resto-
ration to the weakened concept its full vigor. Thus, every time, we have the
restorative + the weakened concept = the original concept. The workings of the
method are exceedingly simple and its applications encompass notably an im-
provement of Heath’s celebrated factorization of developability [4] (see also [6]
and [8]) and the metrization of stratifiable spaces (Remark 1 on Theorem 2.1 and
Theorem 3.2).

0. NOTATIONS AND TERMINOLOGY

1: Given a collection U of subsets on a topological space X. We write ‘U for
{CIU : U € ‘U}. For every x €X, we write U(x) for {U€ U: x €U}. If, given x
€ X, for every neighborhood W of x, there is U € U(x) such that U C W, we say
U(x) is basic.

2: We write [X]=® for the family of all countable subsets of X, given a set X.

3: Given a nonisolated point x in a topological space X, we let a(X,x) = min
{|]A]: A CX\{x} and x € ClA}. Further, a(X) = sup {a(X,x) : x is a nonisolated
point in X}, if X is nondiscrete.

Mathematics Subject Classification: 54E35, S54E30, 54E25, 54E20, S4E18.
Key words and phrases: bases for selected accumulation, generalization of open bases
and networks, restorative, developability of semistratifiable spaces.
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4: A topological space is virtually collectionwise normal if, given any dis-
crete family C of closed sets, there is a o-discrete family ‘U of open sets so that
every member of ‘U intersects exactly one member of C and so that Uc cUu
(see (*) of Theorem 4 of [5]).

5: A topological space X is virtually developable if there is a o-discrete fam-
ily C = U{C,,: n € w} of closed subsets, to each member C of which is associated
a countable family U(C) of open subsets in such a manner that, for every E € X,
{U: E€UE€U(C), CEC(E)} is a local base at § (sce Theorem 1 and Remarks on
Theorem 4 of [5]). If, in particular, for each C, U(C) is a singleton and its sole
member contains C, we have a developable space.

6: A topological space X is a o-space if there is a o-discrete family C =
U{Cn: n € } of subsets such that, for every E € X, C(E) is basic (see 1 above).

7: For definitions of semistratifiable and stratifiable spaces, we adopt the
characterization as laid out in Section 5.8 of [2], keeping in mind the convention
that stratifiable spaces are always Ty (see, e.g., [10, Definition V1.9]).

8: Given a topological space X. A collection U of subsets on X is said to be
a base for selected accumulations (BSA) if, on it, there is a function f : Uu-—
[X]=°, such that, for every EEX, EE ctUf['U ()]. For convenience, we refer to
f(U) as the adumbration of U, for any U € U, and Uf[U(E)] as the adumbration
of ‘U(E). Examples of BSA’s are networks (and of course open bases). Indeed, a
network U is such a BSA that the adumbration of every U € ‘U can be taken to
be within U, in which case we say f is shrinking, and of cardinality 1 (in which
case, we say f is thin). In particular, separable spaces have open BSA’s of cardi-
nality 1, and any topological space that has a BSA of cardinality 1 is separable
(Proposition 1.1). Semistratifiable spaces have o-discrete closed BSA’s (Propo-
sition 1.2 below).

9: Given a topological space (X, T). A function A: X — 2% is called an ante-
cedent, if, for every EEX, EE CIA(E). We write X, for {EEX: EEA(E)}. If, given
any antecedent A on X, there is a function Hy: UA [X4] x 0 — T such that:

(i) x & Hy(x,n), for any x € UA[X,], n € o (Altruism),

(i) for all EE X, H4[A(E) x w](E) is a local base at § (Neighborliness),
we say X is an H,-space.

(Note that it is only required that an open collection, large enough to contain
local bases at all points of X, be indexed by the set UA[XA] x m in a certain man-
ner. Whether it is point-countable is clearly immaterial, even though for a T;-
space with a point-countable base the required indexing is obvious.)

If the range of H, is relaxed to 2X and H4[A(E) x ®](E) is required only to be
basic (Section 0.1), we say X is a sub-H,-space.

The notion of an H,-space, it must be explained, evolved from that of an H-
space [8]. While the former is sufficient for our purpose (Theorems 2.1, 2.2, 3.1,
and 3.2), only the latter is strong enough to force a B-space to have a BCO (cf.
Lemma 3.2 of [3] and [11]).
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1. ELEMENTARY RESULTS

PROPOSITION 1.1: Separable spaces are spaces with BSA’s of cardinality 1,
and conversely.

Proof: Given a topological space X with a countable dense subset A. {X} is
a BSA with an f so defined that f(X) =A. Conversely, if X is a topological space
with a BSA of cardinality 1, the lone element of the BSA has to be X and the ad-
umbration (countable) of X is dense init. Q

PROPOSITION 1.2: On any semistratifiable space X, there is a o-discrete
closed BSA ‘U. Given a closed subset C on X, we can assume the adumbration of
U(E) to be within C, if EEC.

Proof: Given X as described in Theorem 5.8 of [2]. Let the points of X be
well ordered by <. For any x €EX, m,n € , let

UGk, m, n) = glm, \U{g(m, ) : y <xP\U{g(n, 2): 2 & g(m, )}.
Clearly, for every m,n € w, U, , = {U(x,m,n): x € X} is discrete and U=
U{’Um’,,: m,n € w} is a o-discrete closed BSA, if f is so defined that f(U(x, m, n))

= {x} for all x EX, m,n € . The second assertion follows, if one replaces, for all
m € w, g(m,x) by g(m,x)\C wheneverx & C. 0O

REMARK: It follows from the second assertion that, for any countable closed
cover C = {Cy, Cq, C%’ ...} of X, there are o-discrete closed BSA’s ’U(O), ’U(l),
U3, ..., with O, (M), £ ..., such that, for every n € o, Uf(”)[’u(”)(E)] ccC,
ifeeC,.

PROPOSITION 1.3:  On any stratifiable space X, there is a o-discrete open BSA
U, such that, for every EEX, N(UE)™ = {&}.

PROPOSITION 1.4 (Hung [5]): Regular Tg-spaces, virtually collectionwise
normal and virtually developable, are metrizable.

2. PRIMARY RESULTS

THEOREM 2.1: On an H,-space X with a(X) = w, o-HCP (respectively, o-dis-
crete, o-locally finite, locally countable, o-disjoint, o-point-finite, point-count-
able) open BSA’s U beget o-HCP (respectively, o-discrete, o-locally finite,
locally countable, o-disjoint, o-point-finite, point-countable) open bases.

Proof: We note that X is first countable and therefore, for every x € X, there
is a local base {V(x,n): n € w}. For each EEX, let A(E) be Uf['U(®)]. Clearly,

{UNHyx, n),UNV(x, n): x€ f(U),n€E 0, UEU}

is a o-HCP (respectively, o-discrete, o-locally finite, locally countable, o-dis-
joint, o-point-finite, point-countable) open base. [

REMARK 1: Clearly (from the proof), if f is shrinking (Section 0.8), we have
o-HCP ( respectively, o-discrete, o-locally finite, locally countable, o-disjoint,
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o-point-finite, point-countable) open bases on some dense subsets of X, regard-
less whether X is an H,-space, as long as it is first countable. In particular, Nagata
Spaces, being o-spaces, have o-networks C on which are shrinking f’s and there-
fore (we can immediately see) dense metrizable subspaces (if we note their first
countability and their collectionwise normality). Among H ,-spaces, Nagata spac-
es are of course metrizable (see also Theorem 3.2).

REMARK 2: If U = U{'U,,: n € w} is a o-HCP open base on a T3-space X,
then U, for every n € w, is point-finite at points that are not isolated. On the oth-
er hand, if U is only a BSA, we cannot draw the same conclusion.

REMARK 3: On sub-H,-spaces, clearly we have an analogue of Theorem 2.1
where BSA’s beget networks.

REMARK 4: When Theorem 2.1 is applied to point-countable open BSA’s we
have a result in an area addressed in Lemma 2 of [9], where there is, however, so
much overlap that the authors conjectured one of the factors superfluous.

THEOREM 2.2: Given a topological space X with a o-discrete closed BSA C
and with a(X) = w. X is virtually developable if it is an H,- space.

Proof: We note again the first countability of X and a local base {V(x,n): n
€ o} at every x EX. For each EEX, let A(E) = Uf[C(E)]. Clearly, for every C €
C, the family

{Hy(x, n), Vix, ): xEf(C), n€w}

is countable and can be considered the U(C) in the Definition of virtual develop-
ability (Section 0.5). Q

REMARK: Theorem 2.2 above in conjunction with Proposition 1.4 factors me-
trizability into many very weak properties.

3. DEVELOPABILITY OF SEMISTRATIFIABLE SPACES AND
METRIZABILITY OF STRATIFIABLE SPACES

To address the problem of developability of semistratifiable spaces, we are to
strengthen Theorem 2.2. We are to weaken the concept of an H,-space (Section
0.9) by placing a restriction on the antecedent A in the form of a countable closed
cover C, requiring, for every E €X, that EE€ CI(A(E) N C) for every C € C(§). Such
an A is said to be an antecedent restricted to C and such an X an H,-space restrict-
ed by C. Spaces X with a 86-base U = U{’U,,: n € o} such that, for each EEX,
U{U,(®): | U, E)| = w} is a local base at &, is of course an H,-space restricted by

{{xeX:|U,(x)| s 0}: nEn}.

THEOREM 3.1: A semistratifiable H,-space X restricted by any countable
closed cover C, with a(X) = o, is developable.

REMARK: Theorem 3.1 above clearly generalizes Aull [1].
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To address the problem of metrizability of stratifiable spaces, we note Propo-
sition 1.3 and see that the family {U N Hy(x,n): x Ef(U), n Ew, U E U(E)}, as it
appears in the preof of Theorem 2.1, constitutes a local base at EE X, if we have

@ii") n(HA[A(E) x 0](E))” be countably compact and have nonvoid intersec-

tion with any closed T unless T is disjoint from some member of the fam-
ily (HA[A() x 0](8))".
If (ii) in the Definition of H,-spaces (Section 0.9) is replaced by (ii’) above, we
say we have BH,-spaces.® BH,-spaces, like H,-spaces, can, of course, be restrict-
ed by some C. We therefore have the following theorem.

THEOREM 3.2: A stratifiable BH ,-space X restricted by any countable closed
cover C, with a(X) = o, is metrizable.
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ABSTRACT: Iwasawa in his famous paper “On some types of topological groups,” proved
a number of decomposition theorems for compact groups. Among them is the theorem stating
that a compact connected group G can be written as G = Z(G) : [G, G], where Z(G) is the center
of G and [G, G] is the commutator subgroup of G. Later authors have refined this result to the
statement that G = Z(G), - [G, G}, where Z(G), is the component of the identity of Z(G). In the
present paper we show that these theorems may be further strenghthened to the following state-
ment: Let G be a compact group and let N be a compact normal subgroup of G. If either G =
AN, where A is a compact connected Abelian group, or if G/N is connected, then G =
Z(N), - N, where Zg(N), is the component of the identity of the centralizer in G of N. The proof
of this result has a number of interesting corollaries.

1. INTRODUCTION

In his famous paper [7], Iwasawa proved a number of decomposition theorems.
Among them is the theorem: “Let G be a connected topological group and N be a
compact normal subgroup of G. If Ny = [N, N] is the commutator subgroup of N
and if Z(N) is the center of N, then N =Nj - Z(N) and Ny N Z(N) is a totally dis-
connected group.” As noted in his paper if G =N then we have a nice structure
decomposition theorem for G, namely that each compact connected group G can
be written in the form G = Z(G) - G4, where G is the commutator subgroup of G
and G, N Z(G) is totally disconnected. Other authors (see Moskowitz [8]) have
extended this result to show that every reductive compact Lie group has the de-
composition G = Z(G), - Gy, where Z(G), is the component of the identity of Z(G).
Furthermore, in his paper, Moskowitz even extends this result to include all pro-
reductive groups(projective limits of reductive groups) and in particular to com-
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pact connected groups. It is the purpose of this paper to show that Iwasawa’s and
Moskowitz’s results are special cases of the following theorem.

THEOREM 7: Let G be a compact group and let N be a compact normal sub-
group of G. If either G =A - N where A is a compact connected Abelian group or
if G/N is connected then:

(1) G = Zg(N), - N, where Zg(N), is the component of the identity of the cen-

tralizer of N in G;
(2) G contains a subgroup J C Z(G) NN such that GJJ = ZgN),/J x N/J.

We will be making use of the following Theorems A and B that appear in [2,
I11: Section 7.3]. A family of normal subgoups {H,: a« €} of the topological
group G, where I is a directed set, satisfies the [AP] condition if

(1) Ho D Hp, whenever a <,

(2) each H,, a €1, is closed in G, and

(3) each neighborhood of the identity contains one of the H,.

THEOREM A: If G is a T, topological group with a family of normal subgroups
{H:a €I} that satisfies the [AP] condition and if each H,, is compact or complete
then G is the projective limit G = proj G/H,, of the quotient groups G/Hy.

Let G, = G/H,. Note that associated with the projective limit is the collection
of surjective homomorphisms fog: Gg = G, satisfying fopgmg =, for a s f, where
for each y, m,: G — G, is the restriction of the projection map #xy: Iy /Gy —> Gy

THEOREM B: Suppose that G is T, and that the H,, a € I, are compact and

satisfy the [AP] condition.

(a) Let L be a closed subgroup of G; then for each a €1, the subgroup Ly =
my(L) C G, is closed and the isomorphism y: G —> projG, gives by
restriction an isomorphism of L onto projL,. If L is also normal in G,
then L, is normal in G, for each o €1 and v induces an isomorphism of
G/L onto proj Gy /L.

(b) Conversely, for each a €1 let L, be a closed subgroup of G, such that L,
= fap(Lp), whenever a = f. Then there is a unique closed subgroup L of G
such that L, = my(L) for each o €1, and if in addition L, is normal in G,
for each a €1, then L is normal in G.

2. CLASSICAL-STYLE DECOMPOSITIONS

In this section we consider some classical-type decompositions of compact
connected Lie groups and show how the cited theorems on projective limits ex-
tend these to compact connected groups. A corollary of Theorem B is the follow-
ing:

THEOREM 1: Let G be a compact group and suppose the collection {H,: a €
I} of normal subgroups satisfy the [AP] condition, so that G = projG,, where
each G, = G/H,. Suppose that for each a €1, Gy = K¢ * N, where K, and N, are
closed subgroups and N, is normal in G . If the inverse system of surjective maps
fap: Gp = Go, <P, satisty fap(Ng) =N and fop(Kp) = K, then:
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(a) K = projK, is a closed subgroup of G,
(b) N = projN, is a closed normal subgroup of G, and
(c) G =K-N.

Proof: (a) and (b) are immediate from Theorem B. Since n,: G — G is a ho-
momorphism # (K * N} = n(K) - m(N) =K, - Ny =G, for each a. Since K and N
are closed in G they are compact and so K - N is 2 compact and therefore closed
subgroup of G. By the uniqueness of the closed subgroup K - N satisfying
n (K N)=K, ' No=G, it follows that G=K-N. Q

DEFINITIONS AND NOTATION: Let G be a topological group. Then:

(1) Z(G) = {x €EG: xy =yx for all y € G} is the center of G.

(2) G, is the component of the identity in G.

(3) G = [G, G] is the closure in G of the subgroup generated by the ele-
ments xyx~1y~1, where x,y € G. Gy is called the commutator subgroup of
G.

(4) Zg(N) = {x EG: xy =yx for all y EN}, where N is a subgroup of G. Zg(N)
is called the centralizer of N in G.

(5) Ng(I) = {yeG: yTy~1 = T} where T is an Abelian subgroup of G. Ng(T)
is called the normalizer of T in G.

(6) If G is a compact group, a maximal protorus is a maximal connected Abe-
lian subgroup of G. It is known (see [1]) that if G = projG,, where each
G, is a compact connected Lie group then each maximal protorus T =
proj T, where each T, is a maximal torus in G,. A torus T in a compact
Lie group G is a group of the form R"/Z" where R is the real numbers and
Z is the integers.

It is an elementary fact (see [3, 6.14]) that proj G, is a closed subgroup of IIG,
when the G, are T, and it is a folklore theorem that a projective limit of compact
connected groups is compact connected. For completeness we give a proof: If not,
let G = proj G, where each G is compact connected. (It is clear that G is compact
if each G, is compact.) Since G is not connected, it contains a proper open and
closed neighborhood of the identity which by [3, 7.6] contains an open and closed
proper normal subgroup N. Clearly, each x,(N) = N, is an open and closed sub-
group of G so that m(N) = G Since n,(G) = G, for each a, Theorem B implies
G =N, a contradiction.

It is also a classical result [4] that for a compact connected Lie group G we
have G = Z(G), + G1. Consequently, since Z(G), C T, where T is a maximal pro-
torus in G, it follows that G = T - G;. Furthermore, it is well known that G is nor-
ma!l in G.

EXAMPLE 1: If G is a compact connected group then it is a classical result
due to Yamabe [10] that G = proj G, where each G, is a compact connected Lie
group. As noted previously the maximal protorus T in G satisfies T = proj Ty,
where each T, is a maximal torus in G,. Furthermore, the restriction of the pro-
jection my to Gy is a surjection onto Gy 1 = [G4,Gg] so that Gy =projG, 5. There-
fore, by Theorem 1, G = T - Gy.

EXAMPLE 2. Moskowitz [8] shows that if G is a compact connected Lie group
and if 4: G —J is a continuous epimorphism, then Y(Z(G),) = Z(J),- Thus, in
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the case where G is a compact connected group, if G = projG,, where each G
is a compact connected Lie group, then the associated homomorphisms f,g: Gg —
G 0= B, are open continuous surjective maps. Therefore, f,5(Z(Gg)o) = Z(G oo
Thus, Theorem B tells us that there is a unique closed group L in G such that my(L)
= Z(G,), for each o, and L = proj Z(G),-. Since Z(G), is connected and each
is continuous it is clear that x(Z(G),) C Z(G),. Furthermore, as noted already
the projective limit of compact connected groups is compact connected so that L
C Z(G),. Therefore, mg(L) C m4(Z(G),) CZ(Gy), = g(L), so that m,(Z(G),) =
Z(G ), for each a. Thus by uniqueness Z(G), = proj Z(Gg),. (This is a quick proof
of [8, 2.3]). Since Gy = projGy,; and since G, = Z(Gg), - Gg,1; it follows that G
= Z(G),.G1.

NoTE: Example 1 shows that all compact connected G satisfy G =A - N,
where A = T is a compact connected Abelian subgroup and N = G is a compact

normal subgroup. Example 2 shows that all such G satisfy G = Z(G), - N, where
N = Gy, and this is a special case of our Theorems 4 and 7.

3. INNER AUTOMORPHISMS OF COMPACT NORMAL SUBGROUPS
Let G be a topological group.

DEFINITION 1: AutG, the set of automorphisms of G, consists of all topolog-
ical isomorphisms of G onto itself.

DEFINITION 2: InnG = {t€ AutG: ©(x) = yxy~1, for some y € G} is the set
of inner automorphisms of G.

We will be making use of the following famous theorems of Iwasawa [7, The-
orems land 4].

THEOREM C: If G is a compact group then AutG/InnG is a totally discon-
nected group.

THEOREM D: A compact Abelian normal subgroup of a connected topological
group G is contained in the center of G.

An immediate consequence of Iwasawa’s theorem is the following lemma.

LEMMA 1: Let G be a compact group and let G = A - N, where A is a compact
connected Abelian subgroup and N is a compact normal subgroup of G. Let
m:A — AutN be defined by n(x)(y) =xyx~!, y EN. Then x(A) C InnN.

Proof: By Theorem C the set AutN/InnN is totally disconnected. Since A is
connected m(A) and therefore, m{A)/InnN is connected. Therefore, m(A)/InnN C
(AutN/InnN), and so ni(A) CInnN. Q

The next lemma is folklore and it’s proof is a modification of the proof of [7,
Lemma 2.2].
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LEMMA 2: If G is a compact connected group, if H CZ(G), and if G/H is Abe-
lian then G is Abelian.

Proof: Letu €G and let M be the group generated by u and H. Note that M
is Abelian since u commutes with any power of itself and with any element of H.
Let y: G — G/H be the natural map. Then if m €M and x EG we have q)(xmx'l)
= q)(x)lp(m)tp(x)‘1 = y(m) since G/H is Abelian. Therefore, xmx\ = mh € MH
= M, and so M is normal. Therefore, by [7, Theorem 4], M C Z(G). Since u EG
was arbitrary G is Abelian.

LEMMA 3: Let G be a compact group and let G = A - N where A is a compact
connected subgroup and N is a compact normal subgroup of G. Then for each a €
A there is an element n, €N such that n,a € Z(N) (that is, n,a centralizes N). Fur-
thermore, Ny = {n, EN: an, =n,a € Z(N), a € A} is a subgroup of N.

Proof: Letm: A — AutN be defined by a(x)(y) = xyx1, fory € N. Then by
Lemma 1, n(A) C InnN. Thus let a €A and n; € N be arbitrary. Then m(a)(ny) =
anja~! €N. Since n(a) € InnN, there is n € N such that n(a)(ny) = nnqn~! for all
ny €N. Thus anja! = nngn~! or (n‘la)nl(n'la)'1 = nyforalln  EN. If weletn,
=n"1 we see that n,a € Z(N). Thus a =an,n,” = n,"tan, so that n,a = an,.

Now let ny,ny € N4. Then there are aj,a; €A such that ajny, agny €Z(N). Also,
if an, € Z(N) then (any)™' = n,,'la'1 € Z(N). Since Z(N) is a group, multiplication
in Z(N) is closed. Thus, we have a2‘1a1n1n2’1 = a2_1n2‘1a1n1 = (n2a2)'1a1n1 €
Z(N). Therefore, a, lay = ajay ! € A satisfies (az‘lal)(nlnz'l) € Z(N) so that
n1n2'1 ENA. D

LEMMA 4: Let G be a compact group and let N be a compact normal subgroup
such that G/N is connected. Let 8: G —> AutN be defined by 6(x)(y) = xyx 1y €
N. Then 6(G) CInnN.

Proof: Since 8(N) C InnN we have N C 6-1(8(N)) C 8~ (InnN).
By [3, 5.35],
G/07!(InnN) = (G/N)/(®8”' (Inn N)/N),
so that there is a continuous homomorphism T: G/N —> G/8~!(Inn N). By [3, 5.34],
G/671(InnN) = 6(G)/Inn N C AutN/InnN.

This means that there is a continuous homomorphism of G/N into AutN/InnN. But
G/N is connected and so 6(G)/InnN is connected. Since AutN/InnN is totally
disconnected it follows that 8(G)/InnN = {eAutN/innn} so that 6(G) CInnN. O

THEOREM 2: Let G be a compact group and let N be a closed normal subgroup
of G such that G/N is connected. Then G = Zg(N) - N

Proof: By Lemma 4, the map 0: G — AutN, defined by 8(x)(y) = xyx L y€e
N, is into InnN. Thus if x € G, 8(x) € InnN, so there is n € N such that xyx‘1 =
0(x)(y) =n"lyn, for ally €N. This means that (nx)y(nx)'1 =y, forall y EN. Thus,
nx € Zg(N). But then for each x €EG, we have x = n~lnx=nxn"1 € Zz(N) - N, prov-
ing the theorem. (1
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NoOTE: If N is a normal subgroup of G, then Zg(N) is also a subgroup. To see
this, let x,y € Z5(N). Then yn = ny, for all n €N, and therefore, ny'l =y'1n, for
all n €N, so that y~! € Z(N). However, this means that xy~ln =xny™! = nxy™1,
for all n €N, so that xy~ 1€ Zg(N). In the case where G is a compact subgroup and
N is a compact normal subgroup of G, the subgroup Zg(N) and hence Zg(N), are
compact subgroups of G.

4. Z(6G),, Z¢(N), AND THE STRUCTURE OF COMPACT GROUPS

In this section we show that the component of the identity of the center of a
compact group G and of the centralizer of a compact normal subgroup can play a
central role in the structure of the group. Specifically, we will show that if Nis a
compact normal subgroup of G and if either G =A - N, where A is a compact con-
nected Abelian group, or if G/N is connected, then G = Zg(N), - N. We show that
in the first case, where A is Abelian that Z(G), = Zg(N), so that G =Z(G), * N.
These facts lead to some interesting corollaries about automorphism groups, nor-
malizer subgroups of maximal protori of compact connected groups, and commu-
tator subgroups of compact groups.

THEOREM 3: Let G be a compact group satisfying G =A - N, where A is a com-
pact connected Abelian subgroup and N is a compact normal subgroup of G. Then

G =Zo(N), - N.

Proof: We first show that G=Zg(N) - N. Let x € G so thatx =an, where a €A
and n €N. However, by Lemma 3, there is n, € N such that n,a = an, € Z(N).
Thus we can write

x=an = anan,,'ln = (na)(n,"'n) € Zg(N)-N.

Therefore, G C Zg(N) - N C G, so that G=Zg(N) - N.

Now let Y: G — G/N be the natural map so that G/N «AN/N = y(A). Since A
is connected and 1 is continuous it follows that G/N is connected. By [3,5.29] ¢
is open and by [3’ 7.3], ‘lp(ZG(N)o) ="~p(ZG(N))0' By [3, 7'3]7 ZG(N)/ZG(N)O is to-
tally disconnected. Now y(G) = G/N = (Zg(N) - N)/N = W(Zg(N)), so that
PY(Zg(N)) is connected. However, since Y(Zg(N),) is the component of the iden-
tity in W(Zg(N)) it follows that Y(Zg(N),) = W(ZgN)) = G/N. Therefore, G =
Zg(N),-N. QO

THEOREM 4: Let G be a compact group satisfying G =A - N, where A is a com-
pact connected Abelian subgroup and N is a compact normal subgroup of G. Then
G =Z(G), - N.

Proof: By Theorem 3, G = Zg(N), - N. We will show that Z5(N), is central in
G. To do this we first show that Z5(N), is Abelian. With ¢ as in Theorem 3, we
have seen that Y(A) = G/N, and since A is Abelian so is p(A). However, as noted

in Theorem 3, G/N = W(Zg(N)) so that Y(Zg(N)) and also W(Zs(N),) =Y(Z5(N))o
is Abelian. However, by [3, 5.33]

YEZG(N)o) = (Z6(N)o * N)/N = Z6(N)o/Z6(N), NN
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so that Zg(N),/Z5(N), NN is Abelian. Also, Zg(N), NN is normal and Abelian in
Z(N),. Therefore, Zg(N), NN is in the center of Zg(N), by Theorem D. By Lem-
ma 2, it follows that Z5(N), is Abelian.

Since G = Zg(N), - N, if x € G, we can write x = an, where a € Zg(N), and n
€ N. Since Zg(N), is Abelian, if we take b € Zg(N), then bx = ban = abn = anb =
xb, so that Zg(N), is central in G, that is Zg(N), C Z(G). Since Zg(N), is connected,
Zs(N), C Z(G), and 50 G = Zg(N),* NC Z(G),- NCG.Thus G = Z(G),*N. QO

NOTE: Since Z(G) C Z4(N), for any proper subgroup N of G, it follows that
Z(G), C Zg(N),. Thus, from the proof of Theorem 4 it follows that if G is compact
and if G =A - N where A is a compact connected Abelian subgroup and N is a
normal compact subgroup then Z(G), = Zg(N),-

THEOREM 5: Let G be a compact group satisfying G =T + N, where T is a max-
imal protorus of G and N is a compact normal subgroup of G. Let @ be an auto-
morphism of G. Then there exists an element n €N such that &(T) = n~1Tn.

Proof: Since @ is an automorphism ®(7) is a maximal protorus of G. By [3,
7.12], &(G,) = &(G), = G,. Since G, is the maximal connected subgroup of G,
&(T) C G,. By Mycielski [9] (see also [6]), there is x € G, such that x®(Nx~1 =
T. By Theorem 4 , G = Z(G), - N so that x = zn, where z € Z(G), and n €N. There-
fore, anID(T)n’lz'1 =T, and so n<1)(T)n'1 =217z = T. Thus ®(T) = n~1Tn, proving
the theorem. [

As a corollary we can now derive a quick proof of Theorem 4.7 in [1]. It is
shown in [5] that if G is a compact connected group , if n is a continuous surjec-
tive homomorphism of G onto H, and if T is a maximal protorus of G, then n(T)
is a maximal protorus in H.

COROLLARY 1: Let m: G — H be a continuous surjective homomorphism of
the compact connected group G onto H. Let T be a maximal protorus in G, then

N(N(D) = Ng((D))-

Proof: Lety ENy(n(T)) and let F = n‘l(n(T)). Then F =T - N where N is the
kernel of 1. Let x €G be such that n(x) = y. Since yn(T)y‘1 = 1(T), it follows that
xn'l(‘r](T))x'l = n"l(n(T)) or xFx~1 = F. Thus x defines an automorphism of F. Since
T is a maximal protorus in G it is also a maximal protorus of F. Thus by Theorem
5, there is n € N such that n(T) = n~1Tn, or xTx™! = n~3Tn. Thus, nxTx~1n"1 =
nxT(nx)"! = T.Since N is normal, nx =xn; where ny EN, so that xn; ENg(T). Since
M(xny) = n(x) = y it follows that n maps Ng(T) onto Ny(n(T)). Since the inclu-
sion N(N(T)) C Ny(n(T)) is clear, the corollary follows. QO

COROLLARY 2: Let G be a compact group and suppose Z(G) is totally discon-
nected. Then the only decomposition of G in the form G =A : N, where A is a com-
pact connected Abelian subgroup and N is a compact normal subgroup is the
trivial one, where N=G.

Proof: 1f G=A - N, then G =Z(G), - N. Thus, if Z(G) is totally disconnected,
then Z(G),={e} and N=G. 0

NoOTE: This generalizes the classical theorem that says that a compact con-
nected semisimple Lie group G satisfies G =[G, G] = G;.
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COROLLARY 3: If G is a compact group with a decomposition of the form G
=A - N, where A is a compact connected Abelian subgroup and N is a compact
normal subgroup then Zg(N), = Z(G),. Therefore, if Z(G) is totally disconnected

then Zg(N), = {e} and Z(G) = Z5(N).

THEOREM 6: Let G be a compact group and let N be a compact normal sub-
group of G. If G/N is connected then G = Zg(N), - N.

Proof: Note first that Zg(N), - NCZg(N) - N = G and that Za(N)/Z5(N), is
totally disconnected. Furthermore, Zg(N), is a closed subgroup of (Zg(N), - N) N
Zg(N). Thus by {3, 5.34],

2626 [ (e, - N N Z6W) 26N}, = Z6(N) | Z6N), - N) N ZM).

This means that Zg(N)/(Zg(N), - N) N Zg(N) is a continuous image of Zg(N)/
Z(N), under the open homomorphism

p: ZgIN)/Z6MN)o = (Z6IN)/ Z6(N),) / [(@Z6WN)o - N) N Z6(N)/Z6(N)o)

and is, therefore, also, totally disconnected. Note that G = Zg(N) - N = Zg(N) -
(Zg(N), + N). Thus, if we take A = Zg(N) and H =Zg(N), - N in [3, 5.33] we get
the isomorphisms

GZo(N), - N = Zg(N) - N/ZG(N)y * N = ZoN)/(Z6), - N) N ZG(N) .
However,
G/Z6), N = G/N [ (Z6), - N/N)

and so G/Zg(N), - N is a continuous homomorphic image of the connected group
G/N and it is therefore connected. This means that

260 @6y M) N Z6M)

is simultaneously totally disconnected and connected and so must be trivial.
Therefore G = Zg(N),*N. Q

LEMMA 5: Let G =K - H where G is a compact group, and suppose K and H
are closed normal subgroups of G. Then J =K N H is a closed normal subgroup
and G/J =K/J xH/J.

Proof: Itis clear that J is a closed normal subgroup of G. Under the natural
homomorphism ©: G — G /J we see that G/J =(G) = ©(K) - t(H). However, ©(K)
and ©(H) are compact and ©(J) =t(K) Nt(H) = {eg/s}. By [3, 6.12], G /T =t(K) x
«H) =K/JxH/J. Q

COROLLARY 4: Let G be a compact group and let N be a closed normal sub-

group of G such that G/N is connected. Let J =Zg(N), NN. Then G/J =Zs(N),/
JxN/J.

Proof: By the note after Theorem 2, Zg(N), is a closed subgroup of G, and
by Theorem 6, G =Zg(N), - N. Let x €G, then x = an, where a €ZsN),andn €
N.Lety € Zg(N),, then
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ox 1= anyn'la'l = annlyal = aya~l € Zg(N),,
since a,y € Zg(N), and Zg(N), is a group. Therefore, Zg(N), is normal, and
Corollary 4 follows from Lemma 5. Q0

LEMMA 6: If the compact group G can be written in the form G = Zg(N), - N,
where N is a compact normal subgroup, then the group J = Zg(N), NN CZ(G).

Proof: Let x €J-andy €G. Theny = zn = nz, where zEZg(N),and n €
N. Clearly,

xy = x(nz) = (xn)z = (nx)z = n(xz) = n(zx) = (n2)x = yx,
so thatx €Z(G). Q
The previous work can now be summarized in the following theorem.

THEOREM 7: Let G be a compact group and let N be a compact normal sub-
group of G. If either G=A - N, where A is a compact connected Abelian subgroup,
or G/N is connected then:

(1) G=Zg(N), - N, and

(2) G contains a subgroup J C Z(G) NN for which G/J = Z(N),/J xN/J.

Proof: Statement (1) was proved in Theorems 4 and 6, and statement (2) fol-
lows from Corollary 4 and Lemma 6 if we take J = Zg(N), NN. Q
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ABSTRACT: A topological space is called P, (P3, P_,) if and only if it does not contain two
(three, finitely many) uncountable open sets with empty intersection. We show that (i) there are
0-dimensional P_,, spaces of size 2, (ii) there are compact P_,, spaces of size wy, (iii) the ex-
istence of a W-like examples for (ii) is independent of ZFC, (iv) it is consistent that 2% is as
large as you wish but every first countable (and so every compact) P; space has cardinality = w;.

1. INTRODUCTION

In this paper we continue the investigations started in [4]. There P; spaces, i.e.,
spaces having no two uncountable disjoint open subsets, were considered. We
solve some problems which were left open in that paper and strengthen some of
its results. First we introduce some strengthenings of notion P,.

DEFINITION 1.1: A topological space X has property P,, where n is a natural
number, if it is Hausdorff and given open sets Uy, Uy, ..., U,y with N{U;: i <n}
=@ we have |U;| s w for some i <n. We say X is P, if and only if it is P, for each
n <o . The space X is called strongly P, provided the intersection of two uncount-
able open sets is uncountable.

Clearly P, spaces are P, for n <m and strongly P, spaces have property P_.

In Section 2 we construct P_,-spaces: a 0-dimensional one of size 2% and two
locally compact, first countable examples of size w;. One of the ZFC construc-
tions of locally compact P_, spaces is due to S. Shelah [9] and it is included here
with his kind permission.

In Section 3 we will see why the construction of a compact P3 space can be
expected to be much harder than that of a P, one: a W-like example (see the Def-
inition 1.2 below), which worked in the P, case, cannot be constructed for the P3
case in ZFC.

On the other hand we show (Corollary 3.10) that it is consistent that 2% is as
large as you wish and there is a W-like P_-space of size 2%,
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DEFINITION 1.2: (1) Given an almost disjoint family A C[w]® we define the
topological space X[.A] as follows: its underlying set is ® U A, the elements of
 are isolated and the neighborhood base of A € A in X[ A] is By = {A U {A}\n:
nEw}.

(2) A topological space is W-like if and only if it is homeomorphic to X[A] for
some almost disjoint A C [w]®.

It is straightforward that W-like spaces are locally compact, first countable and
0-dimensional.

In Section 4 we present the proof of a partition theorem below the continuum
which was used in [4] to show the it is consistent that 2% is big but every first
countable (and so every compact) P, space has cardinality < w,.

Finally, in Section 5 we strengthen this result (and solve Problem 10 of [4]) by
showing that it is consistent that 2% is as large as you wish but every first count-
able (and so every compact) P, space is of size = ;.

We use standard topological notation and terminology throughout (cf. [6]).

2. ZFC CONSTRUCTIONS OF P_,-SPACES

PROPOSITION 2.1:  There are O-dimensional P_,, spaces of size 2.

First proof of Proposition 2.1:  We show that the space X from [4, Theorem
3] is in fact P, To start with, we recall its definition. Fix an independent family
F C[w]® of size 2® . The underlying set of X will be o U F, where the clements
of o are isolated. The neighborhood base of F € F will be Bp={V{(G): G €
[F\{F}I<}, where V{(G) ={F} UF\UG. If U F =« then X will be 0-dimensional

and T5.

Let Uy, ..., U,_1 be uncountable open subsets of X. For each i <z we can find
{Fi:v<w;} CFand {Gl: v<w} C[F]*® such that Fi¢ G, the F. are all dis-
tinct and Vpi(Gy) CU;.

Define the set mapping f: w; = [w{]<*; by the stipulation

foy={u:3j<n FleU G}

Since the F'{ are different we have |f(v)| = n|U, ., Gi|. By Hajnal’s theorem
on set mappings [3] there is an uncountable f-free subset I of w;. Let vg, ..., v,y
be different elements of I. Then {F{,j:j <n} N U,.<,,gv'i =, so

& #jon F{'f\n(i L<Jn G\l’l) B ion VF\i" (g\il) no CiDn Us

which completes the proof. ([

Second proof of Proposition 2.1:  Consider the space D U {p} where |D| =27,
the elements of D are isolated, and the cocountable subsets of D forms the neigh-
borhood base of p.

Let us recall the following theorem [8, Theorem 4.4.4].

THEOREM: If X is a P-space (i.e., the intersection of countable many open
sets is open) with w(X) <2% then X can be embedded into Bw\w.
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According to this theorem the space D U {p} can be regarded as a subspace of
Bw\w. Consider the subspace Y = w U D of Bo. If U is an uncountable open subset
of Bw with |[U N Y| > then [U N D| > ®, so p€ UND. But w is dense in fo, so
UNDCUN®.Hence,pEUNw, i.e.,, UN wEp. (Remember that the elements
of P\ are just the ultrafilters on w). But the intersection of finitely many ele-
ments of p is not empty, so Yis P, O

PROPOSITION 2.2: There are first countable, locally compact, scattered P,
spaces of size wy.

We present two different examples. The first is due to S. Shelah [9].

First proof of Proposition 2.2:  The underlying set of our space X will be w,
x . For x € oy x © write x = (tg(x), 7;(x)). For A Cwy x w and i <2 put 7(A) =
n’A. If a<wylet Y, = {a} x wand X, = a x o.

Let Py be the family of pairs p = (4, f) which satisfy (i)—(iv) below:

(i) A E[wgx 0]*%,
(ii) fis a function, f: A xA — 2.
To formulate (iii) and (iv) write U(x) = UP(x) = {y €A: f(y, x) = 1} for x EA.
(iff) x € U), U\{x} C Xy
(iv) x € U(y) implies U(x) CU(y).
For p = (A, f) and g = (B, g) from Pg let
psoqifand only ifAD B,

28
Vx,y,zo,...,z,_l €B

it V1) N U) = U, U9(z)
then UP(x) N UP(y) = U, {UP(z).
For p € Py let
W(p) = {{x, s) EAP x [AP]*: s C Xy ()}
For w = (x, 5) € W(p) let b(w) = x and UP(w) = UP(x)\U, ¢ ;UP(y). Let
D(p) = {{wo, w1) € W(p) x W(p): mo(b(wp)) < mo(b(w))}-

Now let P be the family of triples {4, f, d), where (A, f) € Py, d is a function,
d: DA, f)) = o, such that:

(1) if d({wowy)) = d((wg',wy')) then mg(b(wp)) = To(b(w1),

2) if d({wowr)) = d({(wg'sw1'D), & € mo(A) and a < m(b(wg)) = Tg(b(wy')) then

Up(Wo) N Up(Wll) N YO. =,

Write p = (A, fp, dp) forpEP. If p = (A, f, d) and g = (B, g, e) are from P take p
< g if and only if (A, f}<g(b, g)and d De. Let P = (P, <). 0

For a<w; let Eq = {p EP: a Eny(AP)} and £ = {E,: a € 01}

LEMMA 2.3:  (ZFC) There is an P-generic filter over Z.
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Proof: This follows from [10], or Velleman’s w-morass (a weak form of
Martin’s axiom provable in ZFC, see [11]) can be applied for P and E. We ex-
plain the second argument more explicitly. By [11, Theorem 3.4] it is enough to
prove that Z is weakly w-indiscernible for P (see [11, Definition 1.5]).

For n < w, o < w; and an order-preserving function f: n — a define op: P, —> P
as follows. For x = (v, m) € n x  let of(x) = (f(v), m). For {x, 5) € (n x ®) x
[n x 0% let op({x,s)) = (0(x),0f"s). Forp = (A, £, d) E P take of(p) = (of'A, f', d')
E P, where f'(0y(x), 0y(»)) = f(x, y) and d'((5y(w), GAw"))) = d({w, w')).

We should check conditions [11, Definition 1.5, (1)-(5)]. All but (5) are clear.
So let s <n <, f=f(s, n) (i-e., dom(f) = n, f() =i for i <s and f(i) =n +i -5 for
i zs)and p € P,. We need to find a common extension of p and g = o¢(p).

LetB=A,U A, and g: B x B — 2 be the function defined by the stipulation

g {1} =fp‘1{1} qu‘l{l}. Clearly, r = (B, g) is a common extension of p~ = Ap
f» and g~ = (A, fg) in Po. Now for each wo = (wg, w1) € D)\D(g), w; =
wo', wi') € D(@\D(p) and a € my(B) with d,(wp) = dy(wy) and a < my(b(wg)) =
my(b(wy")) pick a different element zi5 % o) € Y, \B. Extend r to r' = (B', g) E Py
by adding the points z5,5, o3 to B in such a way that for any x € B we have
Zimowy.o} € U (x) if and only if b(wg) € U’(x) or b(w;') € U%(x). Finally, taking
d=d,U d,jwe choose d': D(r') = o such that @’ D d, ran(d'\d) N ran(d) = & and
d'\d is 1-1. Now r* = (B', g', d') is a common extension of pand g =0fp)in P. Q

Let G be an E-generic filter over P. The set A = U A,: p € G} is uncountable
because mo(A) = wq by the genericity of G. Take U(x) = U{UP(x): x EAP} and

B, = U\, . U): 1< 0, 20, ... 21— 1 € Xy NA}-

Let X = (A, t), where B, is the neighborhood base of x in X.
It is straightforward that X is scattered, O-dimensional and locally compact.
Finally we show that X is strongly P,. Let

W = {{x,s) EA X [A]*®: s C Xy )}

Forw = {x, s)y€ W put U,, = U)\U, e, Ux).

Now assume that Vg and V; are uncountable open subsets of X. We can find a
sequence S = {(w, wd): o <w;} C[WI? such that:

(i) UyaCV;fori< 2 and o < wy,

(i) @+ 1 =mg(b(w)) <mo(b(wT))-
Letd = U{dp: p €G)}. Then S C dom(d), so there is an uncountable / C w; such
that d is constant on {{w%, w$): o EI}. Then, by the definition of P, we have
Uyg N Uy N Y, = @ for a < B € 1. So the intersection Vy and Vj is
uncountable. O}

Second proof of Proposition 2.2:  The construction will be divided into two
parts. First we introduce the notion of a-good spaces and we show that w;-good
spaces are P_,. Then in the second part we construct an w;-good space in ZFC.

DEFINITION 2.4: Let X = {v x o, t) be a locally compact scattered topological
space of height v < w; such that the a-th level of X is just X, = {a} x w. Write X
=v x {n}. We say that X is v-good if and only if:
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(a) XM is a closed subspace of X and the natural bijection between X" and v
is a homeomorphism;

(b) for each limit ordinal B < v and each a < if x € Xp and U is an open
neighborhood of x then the set

Kyoa={n€o:Unx®"n( U x)=-0}
T asy<f
is finite.
LEMMA 2.5: An wq-good space X is strongly P,.

Proof of Lemma 2.5: Write X 4 for Uvav. Let U and V be uncountable
open subsets of X. Let

I={n€w: {o: (o, n) € U} is stationary}.

By (a) we have |U{X("): n €N\U| = . Since the ideal NS, is o-complete, the
set A = {a <m;: In € w\[{0, n) EU} is not stationary. Hence, there is o <y such
that U N X, C {a} x I. But X, is dense in X\X, so U N X, is dense in U\ o It
follows that [ is infinite.

We show (UN V)\X o = @ for each a < w;.

Indeed pick y EV N Xp where o < B is limit. By (b) the set K, y  is finite, so
we can choose n E1\K,,y . Then V NXMNX_g\Xo) = . But IXX’,)\U| sw,s0V
nun (X<ﬂ\X<a) = & provided that o is large enough, which completes the proof
of the lemma. QO

So it is enough to construct an w;-good space.

LEMMA 2.6: If v < and X = (v x o,T) is a v-good space then there is a v +
1-good space Y such that X is a subspace of Y.

Proof of Lemma 2.6:  First recall that X is collectionwise normal because it
is countable and regular. During the construction we have to distinguish two cas-
es.

CAsg1: v=u+1.

Let {x, ;: n,i<w} beal1-1 enumeration of {u} x w. The family {x, ;: n,i <w}
is closed and discrete, so applying the collectionwise normality of X we can find
a closed discrete family {U, ;: n,i <} of clopen subsets of X with x, ; €U, ;.
Take W, ; = {{v, ;} U U{U,,’j: i sj <w}. Let the neighborhood base of (v, n) in
Ybe W,={W,;: i<o}.

CASE 2: v is limit.

Let {y,: n <o} be a strictly increasing, cofinal sequence in v. By induction

choose ordinals 8, <v and distinct points {x, ;: n s i <w} CX such that:
@) 1n< 8

(i) %y, 1 € B\ x {n}-

Put E, = (V\3,) x {n}. Then F ={E,: n€ o} U{x, ;:n= i € o} is a closed,
discrete family of closed sets because for each a <v the set {F EF:FNX_, =T}
is finite. Applying the collectionwise normality of X we can find a closed, dis-
crete family {U,: n € w} U {V, ;: n < i <w} of clopen subsets of X such that
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E,CU,and x, ; €V, For each x = {0, m) EX fix a countable neighborhood base
B, of x containing only clopen subsets of X, . The neighborhood base of (v, n)
in Y will be generated by the sets

Waivp=( U Vv, )UU\B)
jsi<w

where n = j <o, y EU, and B € By. It is easy to see that Y satisfies the
requirements. O

Now define, by induction on v, v-good spaces X,, for v = ®; which extend each
other. For successor v we can apply Lemma 2.6. For limit v we can simply take
the union. Q

3. ¢-LIKE SPACES

All examples of locally compact P, spaces in [4, Theorems 3, 4, and 8] are ¥-
like. In this section we will see why the examples of first countable, locally com-
pact P_,, spaces constructed in the previous section in ZFC are not W-like.

THEOREM 3.1:  If MA,,, (o-linked) holds then there is no W-like P3-space.
Theorem 3.1 follows from the following combinatorial result.

THEOREM 3.2: (MA (o-linked)) If {F,: a <x} C [®]® is an almost disjoint
family then o and « have partitions (ag, a1, a) and (Io,I4,15), respectively, with
|a;] = @ and |I;| = k such that

Vie3 Va€I; |[Fy,Naj<o. @)

REMARK: As the referee pointed out, MA(o-centered) does not imply this
statement because the strong Luzin property (see Definition 3.8 below) of an al-
most disjoint family is preserved by any o-centered forcing. As it was recalled in
[4], partitioning w into two pieces is also not enough: a Luzin gap , i.e., an almost
disjoint family {Bg: p <} C [w]® such that for each B € [®]® either the set
{B <w;: |Bg N B| <w} or the set {P < w;: |Bg\B| < @} is at most countable, can be
constructed in ZFC.

Proof of Theorem 3.2: For I Cx write Fy = UaE,Fa. Define the poset P =
(P, <) as follows. Its underlying set P consists of 7-tuples {m, A;, I;: i €3) satis-
fying (i)—(iii) below:

(i) mEw, A; € [0], I; € [x]*°,

(ii) (Ag, A1, Ay) is a partition of m,

(iii)FIi N FIij foris= j.

Write p = (P, A?, I : i €3) and I? = U, < 31,P for p EP. Given p,q € P we set
p =q if and only if

(a) mi= mP,

(b) Al =APNmifori€3,

(c) IICIP fori€3,

(d) Fjan@Af\AY) =D fori €3.

Obviously = is a partial order on P.
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Form € w and i €3 put
Dy ={p EP: AP\m = &}
and
D, ={pEP: mP z=m}.
LEMMA 3.3: VmEwVi€3VqIpED, ;psqg AP =1

Proof: Letq € P with A} C m. We can assume that m = m9. Pick m* € (m\F,i‘i)\m.
Choose a function f: [m9, m*] — 3 such that f(m*) = i and k ¢ F} y for k€ [m9,
m*). Such a function exists by (iii). Let 4; =A;.’ UfHj} forj<3 and p = (m* +1,
Aj qu: jE€3). Obviously p EP and m* witnesses p €Dy, ;. Moreover, p <q. Indeed,
conditions (a)-(c) are trivial and (d) holds because AJP\A?=f‘1{/'}. 0

LEMMA 3.4: VYmEwVgIpED,psq AP =1

Proof: Straightforward by Lemma 3.3. 0

LEMMA 3.5: If o &9 then for each i €3 there is a p =g with a er’

Proof: We can assume that i = 0. Fix m € @ with F,NF@aCm. Using Lemma
3.4 pick r ED,, such that r sgand I7=1". Putp = (m", Al je3, 15U {a}, I, I5).
Then p € P because (iii) holds by FoN Fip\(qy = FeN FlaCm & m" =mP. Since p
s g is trivial, the lemma is proved. 0

For a €« put
Eq;={p€EP:If N[00, 0o + w) = T}
and
E,={pEP:aEF}.
LEMMA 3.6: Both E; and E,, are dense in P.
Proof: Straightforward by Lemma 3.5. 0

LEMMA 3.7: P is o-linked.

Proof: By MAml(o—linked) we have k < 2® and so we can choose a countable
dense set D in the product space 3%. For each p = (m, A, I;: i €3)E P pickd, €D
such that d,(a) =i whenever i€E3and aEl.

Let pg and py be elements of P, p; = (m/, A, I]: i € 3). We show that if

)] m0 = ml,

() AP =Alfori€s,

(3) dp, = dp,»
then pg and py are compatible. Clearly this statement yields that P is o-linked.

Let I/ = U, ¢ 31f for j €2 and I = I°N 1. Fix first m' = m with

FIO\[ N Fll\] Cm'. (T)

If k € [m, m’) and j €2 then, by (iii), there is at most one i;(k) €3 with k € Fj o
Choose g(k) € 3\{ig(k), i1(K)}. Then 5
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k& Frly Uiy

Define the partition (A¢', A{, Ay") of m’ by the equations A}/ = A; U g Y} for
i<3.

Putp =(m', A/, I?UI}:i€3).

Check first p € P. Conditions (i) and (ii) are trivial. Since I,2 NI =I'N1 by (3)
we have

Froupt NFpp=
FionNEU (FriyNF YU FoyNFoy) CmUmUm' =m’
FrenrNE)U FEyNFHU Frey 1°\)

by (iii) for pg and p; and by (1). Thus (iii) holds for p. Finally we show that p is
a common extension of pg and p,. Conditions (a), (b), and (¢) obviously hold. But
AP\APo = A/\A; = g~'{i} and g~1{i}N F;0, ;0= @ by the choice of g, so (d) is also
satisfied. The lemma is proved. O F

We are now ready to conclude the proof of the theorem. Let
D ={DpyDp,i:mEw, i€E3}U{Ey Eq ;: 0 EX, iE3}.

By Lemmas 3.3-3.6, D is a family of dense subsets of P. Since P is o-linked,
MA . (o-linked) implies that there is a D-generic filter G over P. Put a; = Uqaz:
pEGtand I; = U{I{’:p € G}. Then (ii) and (b) imply a; N a; = & for i = j. Since
D, NG =3, we have agU a; U ay D m. Moreover, D,,; N G = & implies a; & m.
Thus (ag, a;, a;) is a partition of  into infinite pieces. Similar arguments show
that (Ig, I3, I5) is a partition of k into subsets of size x.

Finally let i €3 and o € I;. Pick g € G with o €17, Then

FoNaCFaNa= egy, F1anN A CATCml

by (d). Q
By the previous theorem the existence of a W-like P3 space of size wq is not
provable in ZFC. On the other hand, we will see that it is also consistent that 2@

is arbitrarily large and there is a W-like P_,-space of size 2 .
We start with a definition.

DEFINITION 3.8: Let A C[w]® be an almost disjoint family. We say that A
is a strong Luzin gap if and only if given finitely many uncountable subsets A,
.y A, of A we have that ﬂ,-<,,( .ﬂi) is infinite.

It is easy to see that A is a strong Luzin gap if and only if the corresponding
W.like space X[.A] (see Definition 1.2) is P_,. In [4, Theorem 6] a Luzin gap was
obtained by a c.c.c forcing due to Hechler [5].

We show that this almost disjoint family is in fact strongly Luzin. First we re-
call some notations and definitions from [4]. Let k > » be a fixed regular cardinal.
Write D = [«]** x k. Let

P = {p: p s a function, dom(p) € D, ran(p) C 2}
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If p,p' EP, dom(p) = A x n, dom(p") =A’ x n' put p < p'if and only if p O p’ and
for each k € n\n’ we have |{a: p(a,k) = 1}|=1.

If G is P-generic then let Ay = {k: 3p € G p(a, k) = 1}. Take AlG] = {Ay:
o <K}.

LEMMA 3.9: A[@] is a strong Luzin gap in vE.

Proof:  Assume on the contrary, that n and m are natural numbers, p I+ “{\",- :
i <n} are injective functions from w; to k and

”» *
(M <n Uacay Ay, ) S ")
For each o < oy pick pg sp p and vy ; € 0 for i <n such that

Po - “Vi(0) =vq,; foreachi<n”

Without loss of generality the v, ; are pairwise different. Let dom(py) = Dy x
k,. We can assume that k, are independent of a, kg=k=zm,{Dy: o <w; } forms
a A-system with kernel D, |Dg| = [Dg, {Vq,;: i <n} CDy\D and denoting by Og,g
the unique order preserving bijection between D, and Dg we have that o, g gives
an isomorphism between p,, and pg and Og p(Va,i ) = vp,; for i <n.

Let ag < ... &,_; <wq. Define the condition g € P as follows:

(1) dom(q) = (U; ., Do) xk +1,

(2) g2 Ui<n Po.lv

(3) q(va;, k) =1 fori <n,

(4) q(&, k) = 0 provided £ € U; ,Do\MVag0: - Yoy, _p, -1}

Then g is a condition which extends p,; fori<n,butgl- k€ ﬂ,. <nfvy ; which
contradicts (*) because k = m. This concludes the proof of the lemma. Q1 :

This lemma yields the following corollary.

COROLLARY 3.10:  If ZF is consistent then so is ZFC + 2° = k is as large as
you wish + there is a W-like P, space of size 29,

4. A POSITIVE PARTITION THEOREM BELOW 2¢

In this section we present the proof of a theorem of Szentmikléssy which was
announced and applied in [4].
Given A,B C k we denote by [A; B] the set {{a, B}: ¢ €A, BEB, a <p}.

DEFINITION 4.1: Given cardinals k, A, and p the partition relation k —
(s M)2 holds if and only if Vf: [x >34, BE [k 3& < (tp(A) = tp(B) = A A
sup A ssup B A f'[A; B] = {E}).

THEOREM 4.2: If ZF is consistent then so is ZFC + 2% = x 2 03 + w3 —>
(w1 ©1))o}-
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The proof is based on the following lemma. To simplify its formulation we
write P = Fn(ws, wy; o). For f, g, h €P we write f=g U h to means that f=g U &
andgNh=0.

LEMMA 4.3: Assume GCH. If f: [w3]? — P then there is some C € [w3]®2 and
there are elements {p, p(E), g(m), r(&, n): &N EC, E <n} CP with the following
properties:

(i) VE<nEC fE m) =p U p(®) U q(m) U r(E, ),

(ii) YEEC {f(E, m): n EC\E + 1} forms a A-system with kernel p U p(E),

(iii)) Yn&C {f(§, n): EEC N n} forms a A-system with kernel p U g(n),

(iv) the p(E) have disjoint supports,

(v) the g(n) have disjoint supports.

Proof of Lemma 4.3: TFix a large enough regular cardinal T and let N be a
countable elementary submodel of H (1) = (H(z), €, <) with fEN, where H(1) is
the family of the sets whose transitive closure has cardinality <.

Let G = {g EN: g is a function from [m3]*® to w; } and H = {h EN: h maps
[3] to @y}

SUBLEMMA 4.3.1: There is D C w5 of order type w, + 1 which is end-homo-
geneous for all g € G and homogeneous for all 4 € H.

Proof of Sublemma 4.3.1: By 2“1 = w, we can choose an increasing sequence
(Ny: o s o) of elementary submodels of #{(t) such that N € Ny, |N,| = 3 and
[No]°1 C N,

Since G,H €Ny, they have enumerations G = {g,: n € w) and H = (h,: n € w)
in it.

Pick an arbitrary x € (»3\sup(Nw2 N w3).

By transfinite recursion on a, define an increasing sequence {x,: a <y} Cay
with x, € N, such that
™

VnVa € [{xg: B < a}]* g,(a, xa) = 84(a; 0)-
This can be done by [N,]®1 CN, < H(t) and x € m3\N,,.
Color the elements of {x,: o < w,} with the #{-colors of the pair {x, x}:

F(xy) = (hy(xq, X): n < w).
The range of F has cardinality sm,® = wy by CH, so there is an F-homogeneous

D' C {x,: a <w,} of size w,, and it is easily seen that D = D' U {x} satisfies the
requirement of the sublemma. Q

To simplify our notation we will assume that D is just v, + 1.

SUBLEMMA 4.3.2: VE<w, 38(E) <wy {fE, M): nE€Ew; + 1\8(€)} forms a A-
system.

Proof of Sublemma 4.3.2: For € <m <’ s w;let d(§, M, n') = dom(fE, m)) N
dom(f(&, n))- Then d(E, 1, ') is one of the w; many countable subsets of dom(f(E,
1)), so, by the end-homogeneity, d(g, , n') is independent of n' for §<m <1's wy.
Denote this common value by A(E, n). Unfortunately we can’t apply the end-ho-
mogeneity for h(E, n), because its range may have large cardinality. But we can
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argue in the following way. We know that n < ' implies A(E, n) Ch(E, n)', because
for any n'<n” we have dom(f(&, m)) N dom(f(&, n")) = h(§, ) = dom(f(& M) N

dom(f(& M), s0 h(E, n) C dom(f(& M) N dom(f(E M")) = A&, M)
But A(E, n)) is a countable set, s0

VE<w, 33(8)<w; Yo' =) hE M) = AE M)

But this means that {dom(f(&, )): n > 8E&)} forms a A-system with kernel
h(E, 8(E)). But f(E, n')[h(E, 3(8)) is independent of 1 by the end-homogeneity, so
the functions f(, n') are pairwise compatible for dE)=n'=wy. QO

Applying in four steps this sublemma, a A-system argument, transfinite recur-
sion and a A-system argument again, we can find a set D € [ + 1]°2; with w, €
D such that

(1) YEED {f(§, m: n € D\E + 1} forms a A-system with kernel PAE). We

write f(&, ) =p*© U + (5 ),

(2) {p*(): EE D} forms a A-system with kernel p. We write pAE) =p U p(E).

So f(€, m) = p U p(§) U r* (&, n)-
(3) VNED VE E,n'ED Nnif E' <7’ then

(domp(&) U domr*(§, m)) N dom f(§, ') = 2,

(4) {f(E,wy): EED} forms a A-system.
By the end-homogeneity of D, it follows that {f(€, n): EED Nn} also forms a A-
system with some kernel g2 (&) for all n € D. Write g*E) = p Ug(n).

Consider the increasing enumeration {8,: v <y} of D and let C = {d,: vis
limit}.

Claim1: If& <n <E<mnare from D, then dom f(E, 1) N domf(E, n) = dom(p).

Indeed, f(&, n) = p U p(E) U r*(§, n) and both dom(p(E)) and domr*(E, ) are dis-
joint from dom( f(€', n)) by (3)-

Claim 2: 1f & <’ <m are from C, then domf(&', ) N domg(n) = &.
Indeed, pick E €D N (n',n), observe g(n) C f(g, m), and apply Claim 1.
Claim 3: 1f v <n are from C, then dom(g(n’))N dom(g(n)) = .

Let & €D N v'. Then g(n’) Cf(E', ') and apply Claim 2.
Claim 4: 1f € <7 are from C, then dom(p(€)) N dom(g(n)) = .

Indeed, pick n* <E* €D N (§,1). Then dom(p(&)) N dom(g(n)) C dom f(En*) N
dom(f(E*,n)\p)) = @ by Claim 1.

So if you take r(&, 1) = f& M \(p(¥) U () U p) for E<n €C, then the set C
and the conditions {p, p(E), g(n), r(& M): &N EC, E <n} satisfy ()=(v). The lem-
ma is proved. Q

Proof of Theorem 4.2: We start with a model of ZFC + GCH and fix an arbi-
trarily large regular cardinal x = 0. Let Cy, = Fn(oy, 2, ®) and consider the poset
Q= H:‘(’l"” Coy = (F(x, Cyy 5 1), Sp) where}smg if and only if dom(f) 2 dom(g),
fo) sc, g(as for each o € dom(g) and |{a € dom(g): f(o) = g} <o (see [2]).
We will show that the model V€ satisfies our requirements.



158 ANNALS NEW YORK ACADEMY OF SCIENCES

It is known that V€ = 2° =, Q is proper and the cardinals in V and in Ve are
the same (see[2]). Obviously the next lemma concludes the proof.

LEMMA 4.4: V€ = “Vg: [003]2 —> w; 34,B C w3 tp(A) = (B) = w,, supA =supB
and Jda € w; VS € [A]® 3Bg € [B]°2; g"[S, Bg] = {a}.”

Proof of Lemma 4.4: Assume g is a name of a function from [003]2 to w;.

For each € <1 < w3 pick a condition s(§, n) €Q and an ordinal a(g, n) € w; with
s(E m) IF“g (§&, M) = o(E, m).” We can assume that dom(s(g, 1)) C w;.

Fix an enumeration of le in V, {s,: v <}, and define a bijection F between
Q and Fn(ws, wy; wq) as follows:

F(s) = h if and only if dom(h) =s
and s(v) = cpy for all v € dom (k).

Now consider the function f: [w3]> — P defined by the formula f(&, n) = F(s(E, n))
x {{w3, a(E, ))}. Formally, the range of fis P x (w3 x wy) = Fn{w; + 1, 0;; ©),
but this poset is isomorphic to P. Applying Lemma 4.3 we can get a C € [w3]®2
and elements {p, p(E), g(n), #(& n): EN & C,E <M} CQ and o € v satisfying (i)
(v) above and a(g, ) = a for each E< n EC. Let A and B be Q-names of subsets C
such that for all E € C we have [EEA] = Fl(p Up(&)) and [n€B] = Fl(p U
g(n)). It is clear that F~1(p) - |A| = |B| = w,.

Let S be a countable subset of A in V2. Since Q is proper, there is a countable
Tin VwithSCT. .

Let B* = {n€B: g"[T N A, {n}] = {a}} and B* be a name for this set.

It is enough to show that F~1(p) I+ |B*| = w,. Assume on the contrary that 7 s
Fl(p), p EC and r - “B* CB N p,” i.e., B* is bounded in B.

Let £ = dom(p) U dom(r) U U{dom(p(‘g‘)): E € T}. Pick o € C\p such that
(dom(g(o)) U dom(r(&, 0))) N E = & for each EET. Since r I |§| = w, there is &
€ T such that r and p U p(E) is compatible.

Let r* =r A (p Up(E) A (g(0) Ur(E,0). Then r* forces a contradiction. (]

This completes the proof of the theorem. (]

5. MODELS WITHOUT LARGE FIRST COUNTABLE P,-SPACES

Hajnal and Juh4sz [4, Problem 10] asked if it is consistent to assume that 2% =
w, and every first countable (or compact) space with property P, has cardinality
< w;. We give an affirmative answer here. We will argue in the following way.
First we quote the definition of principle C(x) from [7], then we show that C(w;)
implies that every first countable P, space has cardinality < w,, finally we will
cite a theorem from [7] saying that C(w,) is consistent with any cardinal arith-
metic.

DEFINITION 5.1:  (See [7].) Let k be an infinite cardinal. We say that princi-
ple C(x) holds if and only if for each family {A(E, n), B(§, n): E€Ex, n € w} C
[@]® either (i) or (ii) below holds:

(i) ICE[K]* Yn,mEw VE= LECAERNB(L, m) =D,

(ii)AD,EE€[x]* Im,mEw VEED VLEE A(E, n)NB(L, m)=2.




JUHASZ ET AL.: INTERSECTION PROPERTIES OF OPEN SETS. II 159

THEOREM 5.2:  If C(x) holds then each first countable, separable Hausdorff
space X of size k contains two disjoint open sets U and V of cardinality .

Proof: Let S be a countable dense subset of X. For each x € X fix a neighbor-
hood base {U(x, n): n € w} of x in X. Take A(x, n) = B(x, n) = U(x,n)N S and apply
C(x). Since X is T, there is no C € [X]* satisfying 5.1(i). So there are D, E € [X]¥
and n,m €  such that U(x, n) N U(y, m)N § = & whenever x €D and y EE. But
S is dense in X, therefore, U = U{U(x, n):x€D}and V= U{U(y, m):y EE} are
disjoint and of cardinality k. O

It was proved in [7] that starting from a model of CH, after adding A-many Co-
hen reals by the poset P = Fn(}, 2, ®), we have that C(y) holds in VF. Since P,
spaces are separable as it was observed in the proof of [4, Theorem 1], Theorem
5.2 yields the following corollary.

COROLLARY 5.3: If ZF is consistent then so is ZFC + “2 is as large as you
wish” + “every first countable P space has cardinality = o; R
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ABSTRACT: In this paper we present, among others, an improvement of HuSek’s character-
ization of the spaces with the weak compact reflection. Our main results are as follows: A to-
pological space has a weak reflection in compact spaces iff the Wallman remainder is-finite. If
a O-regular or T, space has a weak compact reflection, then the space is countably compact. A
noncompact 0-regular or Ty space which is weakly [0, ) -refinable, has no weak reflection in
compact spaces.

1. INTRODUCTION

In this paper we present the solution of the problem of the characterization of
those topological spaces, which have a weak reflection in compact spaces. This
problem probably was posed initially by Zdenék Frolik about 25 years ago. How-
ever, about 3 or 4 years ago J. Adimek and J. Rosicky presented it again. Now
the problem is explicitely stated in [1].

Recall that a compactification y(X) of a topological space X is said to be a
weak reflection of X in the class of compact spaces if for every compact Y and
every continuous mapping f: X — Y there exists a mapping g: y(X) — Y contin-
uously extending f. The concept of weak reflection is a generalization of the well-
known notion of reflection. For the weak reflection, we do not require the unique-
ness of the extension of the mapping f. Note that every topological space has a
reflection in compact Hausdorff spaces. This fact is an immediate consequence
of the properties of the Cech-Stone compactification of the completly regular Ty
modification of the space.

In [1], Addmek and Rosicky stated a natural question: whether the class of all
compact spaces is also weakly reflective. This problem was answered by M.
Hudek in the negative in [4]. Hu¥ek described some spaces having a weak reflec-
tion in compact spaces and some spaces which have no weak reflection in com-
pact spaces. He also fully characterized all normal Ty spaces with a weak compact
reflection; they are exactly the spaces with the finite Cech-Stone remainder.
However, the general equivalent characterization of spaces with the weak com-
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pact reflection has remained unknown because of the fact that the Wallman re-
mainder of the space need not necessarily contain an infinite discrete subspace.

The following Hu¥ek’s results are our starting point and we repeat them be-
cause of completeness:

THEOREM H.1: If the Wallman remainder of a topological space X is finite,
then the Wallman compactification of X is the weak reflection of X in compact
spaces.

THEOREM H.2: If a topological space X contains an infinite family {Xptnen
of closed noncompact subsets such that X, N X,, is compact for n = m, then X has
no weak reflection in compact spaces.

COROLLARY H.1: If the Wallman remainder of a topological space X contains
an infinite discrete subspace, then X has no weak reflection in compact spaces.

COROLLARY H.2: A normal T;-space has a weak reflection in compact spaces
iff its Cech-Stone remainder is finite.

2. DEFINITIONS AND DENOTATIONS

All covering properties (compactness, countable compactness, etc.) are as-
sumed in their general form, that is without any separation axiom. A topological
space X is compact if every open cover of X has a finite subcover. We say that X
is countably compact, if every countable open cover of X admits of a finite sub-
cover.

- For any set S the cardinality of § is denoted by |S|- Let @ be a family of subsets
of X, x EX and let ord(x, ®) = |{F|F € ®, x € F}|. Recall that a topological space
X is said to be weakly [w;, ®) -refinable if for any open cover Q, of uncountable
regular cardinality, there exists an open refinement which can be expressed as
U, 4 @, where |A| <|Q| and if x € X there is some a €A such that 0 < ord(x, )
< |Q|- Remark that the class of weakly [0, o)’ -refinable spaces contains the
classes of paracompact spaces, metacompact spaces and also a number of their
generalizations (para-Lindelof, o-para-Lindelof, screenable, o-metacompact,
meta-Lindeldf, submeta-Lindel6f, submetacompact, weakly 0-refinable, weakly
80-refinable spaces; for more detail, see [2]).

Let X be a topological space. A filter base @ in X has a 0-cluster point x €X if
every closed neighborhood H of x and every F € @ have a nonempty intersection.
A topological space X is said to be 6-regular [5] if every filter base in X with a
@-cluster point has a cluster point. It is shown in [6] that the class of -regular
spaces contains all regular, rimcompact, and all paracompact spaces as well.

Finally, recall that the Wallman compactification of X is defined as the set
o(X) =X U {y|y is a nonconvergent ultra-closed filter in X}, where ‘ultra-closed’
means maximal among all filters, having a base consisting of closed sets. The sets
SW=UY{|ye o(X)\X, U €y}, where U is open in X, constitute an open base
of w(X) (see [3]). Recall that every point of the remainder o(X)\X is closed in

o(X); hence w(X)\X is a T;-space.
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3. MAIN RESULTS

We present two main theorems. The first one is the desired equivalent charac-
terization of spaces with the weak compact reflection. In fact, it slightly improves
Husek’s results, Theorem H.1 and Corollary H.2. The main idea of that improve-
ment is based on a simple, but important observation: Every infinite Ty space con-
tains an infinite discrete subspace, or an infinite subspace with the cofinite
topology (that is, the topology, where a nonempty set is open iff it has the finite
complement). For more detail, the reader is referred to a forthcoming paper [7].

THEOREM A: A topological space X has a weak reflection in compact spaces
iff the Wallman remainder of X is finite.

Sketch of Proof: According to Theorem H.1, it remains to prove that if the
Wallman remainder o(X)\X of X is infinite, the space X has no weak compact re-
flection. But w(X)\X is always a T; space; if it is infinite, it should contain an in-
finite discrete subspace or an infinite subspace with the cofinite topology. The
case of an infinite discrete subspace was solved by M. HuSek; however, the case
of an infinite subspace with the cofinite topology also allows us to construct an
infinite sequence X7, X5, ..., of closed noncompact and pairwise disjoint subsets
of X. Now, Theorem H.2 completes the proof. (1

In the second theorem and its corollary we characterize a relatively large class
of spaces which have no weak reflection in compact spaces. For the proof we re-
fer the reader to [7].

THEOREM B: Let X be a topological space having a weak reflection in com-
pact spaces. If X is 8-regular or T, then it is countably compact.

We leave to the reader to find an (really trivial) example of a topological Ty
space, which has the finite Wallman remainder, but is not countably compact. Of
course, such space is neither T| nor 6-regular. Hence the assumptions of axiom
T, or 6-regularity are substantial.

J.M. Worrell and H.H. Wicke proved that a countably compact weakly
[w4, ®) -refinable topological space is compact and the proof (see, for instance,
[2]) needs no separation axioms. Hence, we have the following corollary:

COROLLARY: Let X be a noncompact topological space which is 8-regular or
Ty. If X is weakly [w;, ) -refinable, then it has no weak reflection in compact
spaces.
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ABSTRACT: We study equivariant embeddability into G-groups. A new regionally proxi-
mal type relation introduced in the paper gives a necessary condition providing some counter-
examples. We establish also some sufficient conditions (for locally compact acting semigroups
G, for instance) improving results of M.Eisenberg and J. de Vries.

INTRODUCTION

Our aim is to investigate the following question: Let a topological (semi)group
G act continuously on a space X. When can X be equivariantly embedded (or at
least, G-mapped nontrivially) into a topological group P in such a way that G con-
tinuously acts on P by endomorphisms (hence, by automorphisms if G is a
group)?

For the particular case when P is a linear G-space, see de Vries [11] and the
references there.

The question leads us to the definition of the free topological G-group over a
(semi)group action (see Definition 1). Qur main result is Theorem 6 which en-
ables us to find compact coset G-spaces G/H such that the free topological G-
group over G/H is cyclic and discrete (as trivial as possible). Roughly speaking,
this means that every continuous G-map of G/H into a G-group P is “collapsed”
into a point. This happens, for example, when G/H = S" is the n-dimensional
sphere where G is the group of all autohomeomorphisms of $” endowed with the
compact open topology. The main tool will be a new “regionally proximal type”
relation (Definition 2) which generalizes the classical notion from topological
dynamics.

Eisenberg [3] has shown that if a Jocally compact group G acts continuously
on a Tychonoff space X then the induced “lifted” action G x A(X) = A(X) (which
is separately continuous for arbitrary G) on the free Abelian topological group
A(X) is jointly continuous. A similar result, if A(X) is replaced by the free locally
convex space L(X) is also true. This was remarked without proof in [3]. De Vries
[11] proved it by categorical methods. We establish that analogous results remain
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true for the free topological group F(X) for an arbitrary locally compact topolog-
ical semigroup G.

CONVENTIONS

Recall that a G-space or, alternatively, a topological transformation
(semi)group (abbreviated: tts, tg) is a system (G, X, a) in which G is a topolo-
gized (semi)group, X is a topological space, and 0: G xX = X, o(g,x) =gxis a
continuous action. As usual, this means that (gh)x = g(hx) for all g,h € G and
every x EX. If G has an identity e (i.e., if G is a monoid) then we require ex = x
for every x € X. A g-transition is the mapping of: X — X, o8(x) = gx and an x-
orbit mapping is the mapping o,: G = X, a{g) = gx. A G-space X will be called
a G-group or G-endomorphic if X is a topological group and each of is a group
endomorphism. If G is a group, under these circumstances we shall call the G-
space X G-automorphic. In the case of a linear space X and linear endomorphisms
of, we obtain the known definition of a linear G-space [11].

The filter of all neighborhoods at a point x in a space X is denoted by N(X). If
u is a compatible uniformity on a topological space X, then for every e € p and
A CX denote by e(A) the set {y €X | (x,y) Ee, x €A}, Subsets A, B will be called
g-near if e(A) Ne(B) = &.

We denote the greatest compatible uniformity by pmax-

Due to [10], the left, right, and upper uniformities on a topological group will
be denoted by £, R, L v R, respectively.

We say that an action a: G xX = X is locally uniformly equicontinuous if for
every g € G there exists V€ N(G) such that {ag}gev is uniformly equicontinu-
ous.

MAIN RESULTS

As usual, for a topological space X denote by F(X), A(X), L(X) the free topo-
logical group, the free Abelian topological group, and the free locally convex
space, respectively.

DEFINITION 1:  Let (G, X, ) be a tts. We will say that an endomorphic triple
(G, Fy(X), o) with a continuous G-mapping iq: X — Fy X) is the free topological
G-group over X, if for every continuous G-mapping ¢ : X — P to an endomorphic
G-space P there exists an unique continuous G-homomorphism §: Fo(X) = P
such that § o i, = @. If p is an uniformity on X, then considering uniform G-map-
pings and the upper uniformities on topological groups, we obtain the definition
of the uniform free topological G-group over (X, ). The corresponding universal
morphism is denoted by ig: (X, n) = Fo(X, 1).

The (uniform) free locally convex G-space Lo(X) (L (X, ), respectively) can
be defined analogously.

An obvious equivariant generalization of the standard product procedure
shows that the just defined free G-objects always exist. However, it turns out that
the embedding problem for i, is much more complicated. We start with the well-
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known definition from topological dynamics.

Let (G, X, o) be a #ts, p a uniformity on X, and § CG. A pair (a,b) EX x X is
called regionally S-proximal [1] written (a,b) € Qy, if for every € € p and arbi-
trary neighborhoods 01 E N, (X), 0, € Ny(X), there exists g €S such that g0y and
g0, are g-near. Otherwise, (a,b) is said to be regionally S-distal. The space X is
called regionally S-distal if Qg= Ay: = {(x, x) | x EX}. The following definition
appears to be new.

DEFINITION 2: (i) We say that a pair (a,b) € X x X is regionally §-
pseudoproximal and write (a, b) € Q¢ (or: (a,b) EQP(X, W), if there exists a fi-
nite {a =xg, X1, ..., X, = b} with the following property:

(*s) for every ¢ € p and arbitrary neighborhoods 0; EN,,(X), i €{0, 1, ..., n}
there exists g €S such that gO; and gO; , { are e-near, for every i € {0, 1,
ceon—1}.

(ii) Let G be a monoid. A pair (a, b) will be called regionally *-pseudoproximal
if (a,b) € QVP for every V € N,(G). This defines a relation Q,F = ﬂ{QVp |ve
N(G)}. If Q.F =X x X or Q.F = Ay, then we say that X is regionally *-pseudoprox-
imal, or regionally *-pseudodistal, respectively.

Obviously, Q¢ and Q.F are reflexive symmetric relations on X satisfying Qg
c QSP’ Q*PC Qsp In general, Qs¢ Qsp’ and Q*p # QSP_

EXAMPLE 3: Let G,={h €EH(I) | h(x;) = x;x; = 7,i €{0, 1, ..., n}} be the
topological subgroup of H(I). Consider the ttg (G, I, ) and the canonical unifor-
mity on I. Then, for every natural n = 3, the elements 0 and 1 are regionally G-
distal. On the other hand, every pair (a,b) €I x I is regionally *-pseudoproximal.
In particular, Qg, is a proper subset of Qc,F foreach n=3.

EXAMPLE 4: Define the homeomomorphism %: I — I by the rule

3x2, Osxs%
1 1 1 2
h(x) = 3 +343x-1, 3SXs3
3x2—4x+2, %sxsl.

Consider the cyclic group G = {h"}, =7 and the natural action G xI — I. Since
0, 3, 5, 1 are fixed then eventually (0,1) & Q¢ On the other hand, elementary
computations show that Q7 =1 x I. Note also that Q.7 = Ay if G is discrete.

LEMMA 5: If f: (X1, i) — (X3, W) is a uniform G-mapping, then (f x f)
(@sP(X1, W) € OsP(Xy, 1) and (f xf) (Q+P(Xy, 1y)) C QuP(Xz, ). In particular,
if (X, w) is regionally *-pseudodistal, then every uniform G-subspace (¥, w|y) is
regionally *-pseudodistal.

THEOREM 6: Let G be a topologized monoid. Then every G-group
{G, (X, w), o) is regionally *-pseudodistal foreachpn€{ L, R, LV R }.

Proof: First we consider the case u=R. Assuming the contrary, take a pair
(a,b) € 0.7 of distinct elements. Since X is a Hausdorff topological group and o
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is continuous, then we can choose neighborhoods Vj € N(X), U € N(G) such
that

VoNgVoab™l) =@ VYg€EU. M

Since Q.P CQ”, then (a,b) E€QF. Consider a finite set {xg, xy, ..., x,} satisfy-
ing Definition 2. Choose symmetric neighborhoods V7, V, € N (X) with the prop-
erties:

Vi€ {0,1,....n} xox V2 CVyxox;! @
vty 3

Due to Definition 2(i), for e: = {(x,y) EXxX | xy~1 € V,} we pick an element g
€ U such that g(V,x;) and g(V,x; . 1) are Vp-near with respect to the right unifor-
mity R on X. More precisely, there exist finite sequences {pg, P15 -+» Pn-1}s {915
G2, +--» qn} in Vy such that g(pix;) (8(gi+ 1%+ 1))"1 EV,foreveryi€{0,1,...,n
-1}

Since of is an endomorphism, then

VtE{O, 1,,”—1} g(pixixi+1_1qi+1_1) EVZ (4)

Consider the element 2= g(porot; a1 )8(Prx %2 'a2”™") -~ 8(Pn-1¥n— 1% 9™
Since V, C Vq by (2), then (4) and (3) imply z € V," C V{" C Vq. Eventually, z
_ 1 -1 1 1 -1 -1, -1
= g(poxox1 (a1 p) x1%7(927'P2)  (dn 1" Pn-1%n 1% 4n )- Clearly,
q,-'1 S V2‘1V2 = V,? for each i € {1, ..., n — 1}. Using (2) and the trivial can-
cellations of the form x()x,-'lxi Xis 1'1 = X x,-+1'1, (1= i< n-1), aftern-1 steps
we get z € g( poVy" ™ xora g, Y) C g(Vi"xgx, gy ")- Using (2) (for i = n), we
obtain z€ g(V;"* Lor, 1) = g(Vy"* lab™) Cg(Voab™). Thus, zEVy N g(Voab™),
which contradicts (1). This proves the case p =R.

For u =L, use the G-unimorphism (X, L) = (X, R), x —»xlandifp = LV R,
use Lemma 5 for the uniform G-mapping f=1y: (X, LV R)—=(X,R). QO

THEOREM 7: Let G be a topologized monoid and let (X, ) be a *-pseudoprox-
imal G-space. Then every uniform G-mapping (X, n) — (Y,E) into a G-group Y is
constant for each &€ € {£, R, L Vv R}. In particular, the free uniform G-group
Fq(X, ) is cyclic and discrete.

Proof: Combine Lemma 5 and Theorem 6. O

EXAMPLE 8: Let X = I" be the n-dimensional cube, or let X = S” be the n-di-
mensional sphere (in both cases n € N). Denote by H(X) the group of all auto-
homeomorphisms of X endowed with the compact open topology. Then
(H(X),X,a) is a regionally *-pseudoproximal ttg with respect to the unique uni-
formity on X. Then, by Theorem 7, the free topological G-group Fy(X) is cyclic
and discrete. It is remarkable that, by Effros’s Theorem [2], $” is a coset space
of H(S™). If X = I then the example answers the question posed by the author in
[4, Problem 1.14].

QUESTION 9: Under which conditions is the G-space G/H automorphizable
(= G-subspace of an automorphic G-space)?
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This is so, for example, if H is a neutral subgroup. Indeed, in such cases, The-
orem 5.8 and Proposition 7.7 from [10]} imply that the action oy of G on G/H is
uniformly equicontinuous with respect to the quotient uniformity L/H. There-
fore, by [7, Theorem 1.2] (or by our Proposition 12) G/H is even G-linearizable.

QUESTION 10: Under which conditions does the free uniform G-group
F (X, ) coincide with the free uniform group F(X, p) over X?

LEMMA 11: Let an action a.: G x X = X be locally uniformly equicontinuous
with respect to a uniformity p.on X and let orbit mapping a,: G — X be continuous
for each y €Y, where Y is dense in X. Then a is continuous.

For a stronger version for groups, see [5, Lemma 2.1].

PROPOSITION 12: Let a: G x X — X be a continuous and locally uniformly
equicontinuous action on a uniform space (X,w). Then Fo(X,n) = F(X,u) and

Lu(X’ W = LX, ).

Proof: Leta: G xF(X,n) — F(X, n) be the lifted action. Clearly, each g-tran-
sition @£ is continuous. Since X algebraically generates F(X,u), then the continu-
ity of orbit mappings o,: G — X and of group operations in F(X, n) imply that for
each w € F(X, u) the orbit mapping &,,: G — F(X, n) is continuous. From the con-
structive description of a neighborhood system of the identity in F(X,w) [8], it
follows that V acts £ v R-uniformly equicontinuously on F(X, ), provided that
V acts uniformly equicontinuous on (X,p). By Lemma 11, @ is continuous. Obvi-
ously, this implies that Fo(X, ) = F(X, ). Using [9] we can make essentially the
same proof work for L(X,u). QO

Pestov [6] proved the continuity of the associated action a: G x Fvb(
Fvb(X) for the uniformly equicontinuous group action a: G x X — X, where F,”(X)
denotes the free uniform balanced (i.e., L = R) group in a variety v. For an anal-
ogous “lifting” Theorem for a modification of the free locally convex spaces, see
[7, Theorem 1.2].

LEMMA 13: Every continuous action o of a locally compact topological sem-
igroup G on a Tychonoff space X is locally py,,-uniformly equicontinuous.

Proof: Let a system § = {d;}; e g of pseudometrics gencrate Wmax and let B
be the system of a]] compact subsets in G. Consider the family sB - {d |kEK,
C e B} where dk (x,y) = sup{d(gx,gy) | g € C}. The compactness of C and the
continuity of o imply that the system {o8 | ¢ € C} is dy-equicontinuous for every
k € K. Then it is easy to see that uniformity 0 generated by the system sBUSis
compatible with the original topology. If A,B € B then A - B € B. Eventually, the
given action is locally 8-uniformly equicontinuous. Finally, observe that the max-
imality of py,, and the inclusion py,y C 0 imply pp,y=6. Q

THEOREM 14: For every continuous action o of a locally compact topological
semigroup G on a Tychonoff space X one has F,(X) = F(X), Ay(X) =A(X), LX)
= L(X).

Proof: It is well known that F(X, ) = F(X), AX, lya) = A(X) and
L(X, Umax) = L(X). So we can apply Proposition 12 and Lemma 13. Q
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Dendrons, Dendritic Spaces, and Uniquely
Arcwise Connected Spaces

J. NIKJEL.“

Department of Mathematics
American University of Beirut
Beirut, Lebanon

ABSTRACT: The paper summarizes recent developments concerning natural orderings and
order topologies on uniquely arcwise connected spaces among which dendrons and R-trees are
given special attention.

This paper is intended as a brief introduction to the theory of connected Haus-
dorff spaces which admit an acyclic partial ordering related to their topology.
Some underlying ideas were developed as early as 1946 by G.S. Young. Further
developments are due to A.E. Brouwer, J.J. Charatonik, C. Eberhart, J.K. Harris,
J. Lawson, J.C. Mayer, J. van Mill, G.G. Miller, T.B. Muenzenberger, J. Nikiel,
L.G. Oversteegen, B.J. Pearson, V.V. Proizvolov, R.E. Smithson, L.E. Ward, Jr.,
E. Wattel, and many others. A more general theory of pseudo-trees and a quite
comprehensive list of references can be found in [10]. For (possibly) different ap-
proaches the reader may consult other papers from the list accompanying the
present note.

Spaces of interest include dendrons (sometimes called trees in other publica-
tions), dendritic spaces (called also tree-like spaces by some authors) and unique-
ly arc-connected spaces, in particular, arboroids, hyperspaces of subcontinua of
hereditarily indecomposable continua, and R-trees. Everywhere below continuum
is an abbreviation for “connected and compact Hausdorff space.”

Let (X, s) be a partially ordered set. Forx €X, we let L(x) = {y EX: y s x}, I(x)
={y:y<x}=L(x)-{x}, M(x) ={y: x =y} and m(x) = {y : x <y}. We shall say
that (X, <) is a pseudo-tree if L(x) is linearly ordered by = for each x €X. If,
moreover, L(x) is well-ordered for each x, then (X, <) is a tree.

A topological space X is said to be orderable if it admits a linear ordering =
such that the collection of all intervals of the form either I(x) or m(x) constitutes
a subbasis for open sets of X. Ordered continua are called arcs. The unique sep-
arable arc is homeomorphic to [0, 1], it will be denoted by J. We shall denote by
J the long ray, i.e., a half-open arc originating from the linearly ordered set of
all countable ordinals with copies of ]0,1[ inserted between a and o + 1 for each
o < 0.

A space which admits a basis of open sets with finite boundaries will be said
to be rim-finite.

Mathematics Subject Classification: Primary 54F05; Secondary 54A10, 54D05, 54F15.
Keywords and phrases: pseudo-tree, dendron, dendritic space, R-tree, cut point.
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A space X is arc-connected if every two points of X belong to an arc contained
in X. And it is J-connected if every two points belong to a copy of I =[0,1] in
X. Obviously, each metrizable arc-connected space is J-connected.

We shall say that an arc-connected space X is uniquely arc-connected if, for
every x = y €X, there exists exactly one arc K in X which has the end points x and
y. That unique arc K will be denoted by [x,y] (also, we let [x,x] = {x}).

A uniquely arc-connected Hausdorff space X is nested if the union of each lin-
early ordered by inclusion collection of subarcs of X is contained in an arc.

The following are examples of uniquely arc-connected Hausdorff spaces:

(1) the hyperspace C(Y) of all subcontinua of a hereditarily indecomposable
continuum ¥ (with its Vietoris topology);

(2) arboroids, i.e., arc-connected hereditarily unicoherent continua (recall
that a continuum Z is hereditarily unicoherent if the intersection of every
two subcontinua of Z is connected); metrizable arboroids are called den-
droids;

(3) dendrons (see below, dendrons are exactly locally connected arboroids);

(4) R-trees, i.e., metrizable uniquely arc-connected spaces which admit a
metric such that each arc is isometric to an interval of real numbers.

It is well known that spaces in (1)—(3) are nested, while R-trees usually are not
nested. The “Warsaw circle” is an example of a metrizable uniquely arc-connect-
ed continuum which is not nested.

Let X be a uniquely arc-connected Hausdorff space and p €X. We define the
weak cut-point (partial) ordering s, with the base point p on X by x s,y if
x€[p,y] (equivalently, if [p,x] C [p,y]). Quite obviously, (X, =) is a pseudo-
tree.

A dendritic space is a connected space every two points of which can be sep-
arated by the omission of some third point. It easily follows that each dendritic
space is Hausdorff. Compact dendritic spaces are called dendrons, and metrizable
dendrons are called dendrites. Clearly, each arc is a dendron. It is well-known
(see, e.g., [7]) that each dendron is uniquely arc-connected, nested, hereditarily
unicoherent, locally arc-connected, and rim-finite (whence hereditarily locally
connected). In 1974, Brouwer, Cornette, and Pearson gave independent proofs
that each dendron is a continuous image of some arc (more general facts are now
available). Therefore, dendrons are monotonically normal [3]. About 1984, T.
Kimura and Nikiel independently proved that dendrons are regular supercompact.

Let X be a dendritic space and p €X. Forx,y €X we let [x,y] = {x,y} U{zEX:
z separates X between x and y}. In particular, [x,x] = {x}. Let us define the cut-
point (partial) ordering <, with the base point p on X by letting x s,y if x € [p, y].
It follows that (X, sp) is a pseudo-tree.

The space {(0,0)} U {(x, sing) :0 <x = 1} with its topology induced from the
Fuclidean plane is dendritic but not arcwise connected.

In general, if K is an arc in a dendritic space X, then K ={a,b] for some a,b EX.
And if a dendritic space is either rim-compact or locally connected then it is arc-
connected (see [11]). The following was proved by Proizvolov in 1969:

THEOREM 1: For a dendritic space X the following conditions are equivalent:
(i) X is rim-compact,
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(ii) X is rim-finite,
(iii)X admits a dendritic compactification, i.e., it is homeomorphic to a dense
subset of a dendron.

Roughly speaking, the dendritic compactification mentioned in (iii) is formed
from X by addition of the “missing end points.”
The following remarkable fact is due to van Mill and Wattel (see, e.g., [6]).

THEOREM 2: A Hausdorff space X can be embedded into a dendron if and
only if it has a subbasis S such that for every A, B €S at least one of the following
conditions holds: AU B=X, ANB=J, AC B or BC A.

For a given pseudo-tree (X, <) there are two immediate ways of introducing an
order compatible topology on X [10]. Both are similar to the construction of the
order topology on a linearly ordered set. One of those topologies is the interval
topology T; which is obtained when the family {M(x) : x EX} U {L(x) : x EX} is
taken as a subbasis for closed sets. The other one is the weak order topology T
which has {m(x): x €EX} U {X - M(x): x EX} as a subbasis for open sets. It has
much better order compatibility properties than the interval topology. Of course,
pseudo-trees are much more complicated than linearly ordered sets. Therefore,
also T, does not have all the properties of a well-behaved order topology. For
example, (X,T.) need not be Hausdorff, maximal linearly ordered subsets of
(X, <) need not be closed in (X,T.) and = need not be a continuous ordering on
(X,T.) (i.e., it need not be a closed subset of X x X). All pathologies are removed
when the order topology T, on X is introduced by adding to T all sets of the
form M(x), where x is such that, for some y = x, either I(x) = I(y) or I(x) =L(y) (see
[10] for details; T and T, coincide if and only if (X, T, ) is a Hausdorff space).
As remarked in [10, 6.12 (iii) and 6.17 (iii)], T coincides with the Lawson to-
pology for most pseudo-trees (X, <). The class of those pseudo-trees includes the
ones for which T =T,

Now, let (X, T) e eltll)ler a dendritic space or a uniquely arc-connected Haus-
dorff space, and let p € X. Recall that (X, s,) is a pseudo-tree (see [7], [8], [11]
or [10] for its order characterization), and so one can consider its order topologies
Tsp and T. . It easily follows that they coincide, i.e., T, = T.. Also, (X,T p) is
a rim-finite dendritic space and Tsp does not depend on the cﬁmce of the base-
point p.

Suppose that (X, T) is a dendritic space. Then T, CT and Tsp =T if and only
if (X, T) is rim-finite. In particular, if (X, T) is a dendron then Tsp coincides with
T.

Suppose that (X,T) is a uniquely arc-connected Hausdorff space. Then T co-
incides with the topology introduced on X by the subbasis {Y: Y is an arc-com-
ponent of X - {x}, x €X} for open sets. It also follows that (X,T. ) is a dendron
if and only if (X, T) is nested. The topologies T and Tsp usually are not compara-
ble, for example, if (X,T) is a nonlocally connected dendroid, then T and T are
different Hausdorff topologies on X. Despite that order-theoretic properties of
(X, =) can be employed to give results concerning (X, T). One of the possible ap-
p11cat10ns is Theorem 4 below. As another example we mention the following
fact: If X is a planable dendroid then the set of all ramification points of X can be
covered by countably many arcs (see [10, 8.9 and 9.12]).
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Let X be a rim-finite dendritic space and x € X. By r(x) we shall denote the
order of ramification of X at x, i.e., r(x) is the number of components of X - {x}.
We shall say that x is an end point (respectively, a ramification point) of X if r(x)
=1 (respectively, if 7(x) = 3). The following theorem follows from [10, 7.6].

THEOREM 3: Let a be a cardinal number =3, K be an arc or a half-open arc,
sbe its end point and < be the natural linear ordering of K in which s is the small-
est element. Then there exist a rim-finite dendritic space K, with a point s, €K,
and a function f: K, — K such that:

(@) {sa} =f7(s);

(b) if t EK and ¢t is not the biggest point of (K, =), and x € f~1(1), then r(x) =

a;
(c) ifx,y EK,andx < y then f(x) <f(y);
(d) if L is 2 maximal linearly ordered subset of (K, =) then f(L) =K.

The function f as above is said to strongly fold K, onto K. It is never continu-
ous, but f|[su’x] is a homeomorphism for each x € K. The space K, has nice
uniqueness and universality properties (see [10, 7.7]).

THEOREM 4: [10, 10.2] Let Y be a metrizable hereditarily indecomposable
continuum. Then (C(Y), T.y) is homeomorphic to I,Ro.

Now, let X be a uniquely arc-connected and J-connected Hausdorff space and
p EX. By [10, 8.22], (X, Ts,) can be embedded into J o for a sufficiently large
cardinal number o. Even if X is nested (e.g., an I-connected dendron), it does not
follow that (X, Tss,) can be embedded into some I . Such spaces can be construct-
ed under the assumption that there exists a Souslin line (see [10, 8.26 (ii) or 8.27
VDD

Let X be an R-tree. Thus X is a uniquely arc-connected space which admits a
convex metric d, that is d(x,z) = d(x,y) + d(y,z) for every x,z € X and y € [x,2].
Then X is locally arc-connected and it follows that it is a dendritic space. Clearly,
only few R-trees can be rim-finite. Therefore, in general, R-trees do not have
dendritic compactifications. However, it is possible to embed densely each R-tree
into a smooth arboroid [4]. The following result was obtained by Mayer and
Oversteegen:

THEOREM 5:  [5] The class of R-trees coincides with the class of uniquely arc-
connected and locally arc-connected metrizable spaces.

Let X be an R-tree, d be a convex metric on X and p €X. We consider X with
its cut-point ordering =,. For every x,y € X there exists the unique z €X such that
L(z) = L(x) N L(y), we denote that point by z=x A y. We also define g : X — [0, o[
by g(x) = d(p,x). Then g folds X into [0,[, i.e., gl[p,x] is a homeomorphism of
[p,x] onto [0, g(x)] for each x € X. Since g is defined with the use of a metric, it
is a continuous function. Observe that g and the arc structure of X give enough
data to recover the metric d by the rule d(x,y) = g(x) + g(¥) -2 - g(x A y). It also
can be shown that the collection {m(x): x €X} U {g71 ([0,¢[): t €10, [} is a sub-
basis for open sets in X. In [4] a somewhat reverse procedure was employed to
give the sets I, or [0, [, a =3, a natural R-tree topology, and it was proved that
the obtained R-trees have strong universality properties.
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ABSTRACT: Weakly infinite-dimensional compacta can be classified by means of essential
maps onto “transfinite cubes” (Smirnov’s compacta). We investigate the behavior of this clas-
sification under finite-to-one mappings. In particular, we show that this topic is closely related
to an open problem about the invariance of strong infinite-dimensionality under light mappings
on compacta. We provide also an analogue for the transfinite dimension ind of Hurewicz’s the-
orem on dimension-rising mappings.

1. INTRODUCTION

We shall consider separable metrizable spaces only, and a compactum is a
compact space.

An n-dimensional compactum can be mapped essentially onto the n-cube, but
not onto the (n + 1)-cube. Compacta which admit an essential map onto the Hil-
bert cube are called strongly infinite-dimensional, and the other ones weakly in-
finite-dimensional.

An outstanding open problem in this topic is the following one [4, Section 2],
and Remark 3.2 below.

PROBLEM 1.1: Let f: X — Y be a continuous mapping between compacta
such that Y and all the fibers of f are weakly infinite-dimensional. Must X also
be weakly infinite-dimensional?

Yu.M. Smirnov [15] defined the compacta S, o < @y, which display a natural
transfinite scale of dimensional complexity between the finite dimension (repre-
sented by the euclidean cubes) and the infinity in the strongest form (represented
by the Hilbert cube). Subsequently, D.W. Henderson [6] introduced the concept
of an essential mapping onto those compacta. For any weakly infinite-dimension-
al compactum X, the set of ordinals o such that some compactum in X can be
mapped essentially onto S, is bounded in wy [12], and its supremum (in fact, the
maximum) is the Borst-Henderson index d(X) [1], [2], [4].

We shall show (in Section 3) that the positive answer to Problem 1.1 is equiv-
alent to the statement that the property d(X) = o is preserved by finite-to-one con-
tinuous maps, for all a from a closed unbounded set in w;.

Mathematics Subject Classification: 54F45, 54C10.
Keywords and phrases: strongly infinite-dimensional, essential maps, finite-to-one
maps.
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To shed more light on the problem, we associate (in Section 4) to each finite-
to-one continuous map f : X — Y between compacta a countable ordinal ord f,
the transfinite order of f. Then we show (in Section 5) that the property d(X) =z a
is preserved by continuous maps with ord f < a, for all a from a closed unbounded
set in wy.

Our proofs do not indicate, however, what happens for concrete ordinals a.

In the last section the transfinite order ord f is used to provide an analogue of
Hurewicz’s dimension-raising theorem {8, p. 93] for the transfinite dimension
ind. As before, our approach gives no exact formula.

2. SMIRNOV’S COMPACTA, ESSENTIAL MAPS, AND
THE BORST-HENDERSON INDEX d(X)

In this section we introduce the main notions considered in this paper. Our ter-
minology follows [9] and [11].

2.1. THE HYPERSPACES AND THE FUNCTION SPACES: The hyperspace K(X)
of a compactum X is the space of nonempty compact subsets of X with the Viet-
oris topology [9, Section 17]. Given compacta X,Y we denote by C(X, Y) the space
of continuous functions from X to Y with the topology of uniform convergence.

2.2. SMIRNOV’S COMPACTA: Yu.M. Smirnov [15] defined for each countable
ordinal o a compactum S in the following way: S, = I" is the euclidean n-cube,
S, +1 = Sq x I and, for limit o, S, is the one-point compactification of the free
union of Sg with p < a. Every compactum S, has only countably many compo-
nents, , each being a finite-dimensional cube.

2.3. ESSENTIAL MAPS, WEAKLY INFINITE-DIMENSIONAL COMPACTA AND THE
INDEX d(X): A continuous mapping f : X—> I”" onto the n-cube is essential if for
any continuous map g : X ——> I” which coincides with f on the preimage PGl o)
of the boundary, g(X) = I". We say in this case that f covers the cube essentially.

A continuous mapping f : X — I” from a compactum X onto the Hilbert cube
is essential if for each projection p,,: I” — I” onto the n-th coordinate product,
the composition p, o f: X —> I” is essential.

A compactum X is called weakly infinite-dimensional if X can not be mapped
essentially onto I®, or strongly infinite-dimensional, if such a map exists on X.

Following D.W. Henderson [6] we shall say that a continuous mapping f :
X— S, from a compactum X onto Smirnov’s compactum S is essential if f
covers essentially each open component C of S, i.e., f maps essentially f'l(C)
onto the cube C.

We changed slightly the original definition of Henderson, who considered S,
embedded canonically into AR-compacta J,, defined along with S, but by Prop-
osition 3 in [6], this is an equivalent approach.

P. Borst [1], [2] made a significant progress in understanding this notion. A
comprehensive account of the topic is given by V.A. Chatyrko [4].

Let us associate to each compactum X its Borst-Henderson index d(X) (denoted
in [2, 4.3] by Ess(X)): d(X) is the supremum of the ordinals o such that some com-
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pactum in X maps essentially onto S, if the supremum is countable, and d(X) =
oo, otherwise.
Below we list some basic properties of the index.
2.3.1: If d(X) is finite then d(X) = dimX, and d(S,) = a, [6], [15, Theorems 3
and 5).
2.3.2: For any compactum X, d(X) = « if and only if X is strongly infinite-
dimensional [12, Theorem 2.1] and [2, Theorem 4.3.1].
2.3.3: By [2, Theorem 4.3.2], if d(X) = oo, then the supremum in the defini-
tion of d(X) is attained, i.e., some compactum in X maps essentially onto
Sd(X)
2.3.4: If d(X) = o + 1 then there exists a pair of disjoint closed sets 4, B in X
such that for each partition S in X between A and B, d(S) = o, [6, Proposi-
tion 4] and [2, 4.3].
2.3.5: For each E < wj there exists a weakly infinite-dimensional compactum
Z which contains topologically all compacta X with d(X) =§[12, 5.1] and
[1, Theorem 3.3.8].
2.3.6: For any analytic set S in the hyperspace of the Hilbert cube K(I*)
the elements of which are weakly infinite-dimensional compacta,
sup{d(X): X € S} < w [12], [1, Theorem 3.3.8].

2.4: THE LENGTH OF A WELL-FOUNDED RELATION: Let < be a partial order
on a set A. The order is well-founded on ' C A if there is no infinite descending
sequence aj > ay > ... in I. The length of (T, <) is then defined inductively as
follows [10, 2.D].

For u €T, rankpu = 1 means that there isno v €T with v < u,

rankpu = sup{rankpv+ 1: vET, v < u}

and, finally,
lengthT" = sup{rankru: u €I'}.
If < is not well-founded on I, we let lengthI’ = .
Let < be a partial order on a countable set A. We denote by 2 the space of all

subsets of A, identified with the characteristic functions, equipped with the point-
wise topology. For each E < wy, the set

{T CA:lengthT < E} is Borel.
This can be easily verified by induction [9, Section 38, 1X].

3. FINITE-TO-ONE MAPPINGS AND THE INDEX d(X)

In this section we shall show that Problem 1.1 can be translated into a problem
concerning the behavior of the Borst-Henderson index d(X) (see Section 2.3) un-
der finite-to-one mappings. A theorem of Torunczyk [16] will play a key role in
our reasoning.
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THEOREM 3.1: The positive answer to Problem 1.1 is equivalent to the fol-
lowing statement: for all o from a closed unbounded set in wy, if f : X—>Yis a
finite-to-one continuous mapping between compacta and d(X) =z a, then d(Y) z ..

Let us notice that if f : X — Y is as in the statement and d(X) is finite, then
d(Y) = d(X) by a theorem of Hurewicz on dimension — lowering maps [8, Section
4, 2.3.1] and if d(X) = o, then d(Y) = = [14, 2.3.2].

REMARK 3.2: A continuous mapping f : X — Y between compacta is light
if the fibers of f are zero-dimensional [7]. Let us notice that Problem 1.1 is equiv-
alent to the problem of whether light mappings preserve strong infinite-dimen-
sionality. Indeed, suppose f : X — Y is a continuous map between compacta
such that X is strongly infinite-dimensional but Y and all the fibers of f are weakly
infinite-dimensional. By a theorem of Henderson [5], X contains a strongly infi-
nite-dimensional compactum K, each weakly infinite-dimensional subcompactum
of which is at most zero-dimensional. Then f restricted to K is light.

3.3. Proof of the implication <=: Assume that Problem 1.1 has a negative an-
swer, i.e., by Remark 3.2, there exists a light mapping f : K—— L of a strongly
infinite-dimensional compactum K onto a weakly infinite-dimensional compac-
tum L. We have to show that the statement in Theorem 3.1 is in this case false.

We shall consider K and L with fixed metrics, and we shall call a continuous
map on K or L an e-map, provided that its fibers have diameters less than e.

Since f is light, for each natural n there exists €, > 0 such that f maps continua
in K of diameter = 1/n onto continua in L of diameter = ¢,.

Let [,: L —> L, be an g,-map onto a finite polytope, and let I, o f = u, ° ky,
k,: K—> K, u,: K,—> L,, be the monotone-light factorization of [, o f, i.e., u,
is light and the fibers of k, are connected [7, Section 3~7]. The continua k,,'l(s)
are taken by [, o f to points, hence diamf(k,,‘l(s)) < &, and therefore k, is a 1/n-
map. Since u, is light, K, is finite-dimensional.

We now shall repeat a reasoning from [12, Section 3]. Let 2% be the Cantor set
and let Q = {gy, g5, -.-} be a countable set dense in 2%. In the product 2 x K we
attach to each section {g,} x K the compactum K, by the map k,, and in the prod-
uct 2% x L we attach to each section {g,} x L the polytope L, by the map /. In
effect, we get compacta K* and L*, respectively. The projections from 2% x K and
2%® x L onto the first axis induce continuous mappings pg: K* — 2% and py : L*
—— 2%, and the map id xf: 2° x K——> 2% x L induces a light mapping f*: K*
—— L* such that p; o f* = pg.

Let C be the collection of nonempty compact subsets of Q. For each C € C we
set K(C) = px~1(C) and L(C) = p; ~}(C). Then f* maps K(C) onto L(C). Since K
is strongly infinite-dimensional, by [12, Section 2, Proposition 3.1] and [1, 3.3],
sup{d(K(C)): C € C} = w,. On the other hand, L is weakly infinite-dimensional,
and so is L*, and therefore & = d(L*) < 0y.

Let o > E and let us consider C € C with d(K(C)) z o + 1. For each g €C, f*
is a light map from ’Kq =pK’1(q) onto L, =pL’1(q). Since L, is finite-dimensional,
a theorem of Torunczyk [16] provides a zero-dimensional set Ny C K, such that
f* restricted to Kq\Nq is finite-to-one. Let A and B be a pair of disjoint closed sets
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in K(C) described in Section 2.3.4 (where X = K(C)), and let S be a partition in
K(C) between A and B, disjoint from the zero-dimensional set U{Nq: q €C}.
Then d(S) = a, f* restricted to S is finite-to-one, and d(f*(S)) = & We conclude
that the statement in Theorem 3.2 is false foralla>E. QO

3.4. Proof of the implication =>: Assume that Problem 1.1 has a positive an-
swer. Let us fix & < w;. We shal! find ¢(E) < w; such that for any light mapping
f: K—> L between compacta, if d(K) > (€ ) then d(L) > E. Then the closed
unbounded set of countable limit ordinals a with @(B) < o for all B < a will wit-
ness the validity of the statement in Theorem 3.1.

To this end, let Z CI™ be a weakly infinite-dimensional compactum described
in Section 2.3.5, and let (cf. Section 2.1),

A = {(K, u) EXA™) x CA", I*): u(K) CZ and u restricted to K is light}.
The set A is of type G, and its projection on the first axis,
proj A C K(I®) is analytic.

By our assumption, each K € A is weakly infinite-dimensional, and by Sec-
tion 2.3.6,

@(€) = sup{d(K): K € proj A} < w;.

Let f : K— L be a light mapping between compacta with d(K) > @(§). Aim-
ing at a contradiction, suppose that d(L) < & We can assume then that L CZ, K C
I®, and let f* € C(I*, I®) be a continuous extension of f. The pair (K, f*) belongs
to .A, hence K € proj A, but this contradics the definition of @(§).

3.5. REMARK: The reasoning in Section 3.3 shows that Theorem 3.1 remains
true if the statement is restricted to compacta X, Y which have an upper semicon-
tinuous decomposition into countably many finite-dimensional compacta (such
compacta can be embedded in one of Smirnov’s compacta [12, Lemma 2.1]).

4. THE TRANSFINITE ORDER OF FINITE-TO-ONE MAPPINGS
ON COMPACTA

Let X be a compactum. A regular partition of X is a finite cover A of X by
nonempty regularly closed sets (i.e., sets which are the closures of their interiors)
with pairwise disjoint interiors. We shall consider the collection I'(X) of all reg-
ular partitions of X with the partial order <, where A < B means that A refines
B and there exist A € A, B € B such that A = B and A CintB.

Let f : X — Y be a continuous mapping between compacta. We set

I(f) = {A €TX): N{f(intA): A € A} = B}. M

In the sequel we shall use terminology introduced in Section 2.4.

LEMMA 4.1: The order < is well-founded on I'(f) if and only if f is finite-to-
one.
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Proof: Assume that < is not well-founded on I'(f), and let A > A, > ... be
an infinite descending sequence in I'(f). We shall choose numbers n(1) < n(2) <
... and disjoint families D; C A,; such that D, has at least i elements and

N{fA): A €D, ) CN{FA): A ED}. @

Suppose n(i) and D; have been chosen. There exists E Eﬂ,,(,-) such that for in-
finitely many j > n(i) the relation .ﬂj+1 < .ﬂj is witnessed by some elements con-
tained in E. Then we can find k > n(i), A € A, with A = E and A CintE, and I > k,
BEA,CE A, withB=Cand BCintC CE. We set n(i + 1) = / and define D,
+1 as follows. First, each D € D,\{E} is replaced by an element of A, contained
in D. If E & D; we then add B. Assume that E € D;. Then E is replaced by B and
an element of A, contained either in A or in E\intA, depending on whether A = C
orA=C.

Now, by compactness, we get from (2) a pointy € n,-(ﬂ{f(A) :A€D;}). The
fiberf"l(y) intersects each element of every family DJ;, and hence it is infinite.

On the other hand, assume that f has an infinite fiberf‘l(y) and let Aq, Ay, ...
be pairwise disjoint regularly closed sets in X with intA; Nf~1(y) = @. Then each
family A; = {4y, ..., Ap X\(intA{ U ... UintA;)} belongs to I'(f) and A; > A; >

- Q

DEFINITION 4.2:  The transfinite order of the mapping f is now defined as fol-
lows: ord f = length T(f), if f is finite-to-one, and ord f = o, otherwise.

Since, apart from some trivial cases, I'(f) is uncountable, it is not immediately
clear that ord f = « is a countable ordinal.

LEMMA 4.3: If f is finite-to-one, then ordf is a countable ordinal.

Proof: Let K(X) be the hyperspace of the domain of f (see Section 2.1) and
let E be the set of points (A, ..., 4,, &, &, ...) in the countable product K(X) x
K(X) x ..., such that A = {Aq, ..., A} ET(f) . Let <* be the partial order on E
corresponding to the order < on I'(f). Then both orders are well-founded and
have the same length. Using the Borel measurability of the map K — cl(X\K)
from K(X) into itself [9, Section VIII], one readily checks that <* is an analytic
order. The assertion is now a consequence of the theorem that analytic well-
founded relations have countable length (see [10, 2G]).

REMARK 4.4: Finite order ord f is the maximal cardinality of the fibers of f.
If f: 2% —> S, is a continuous mapping from the Cantor set onto Smirnov’s
compactum S, then ord f = « [13, Proposition 4.1] (the proof shows that ind can
be replaced in this proposition by Ind) and [15, Theorem 5].

5. THE TRANSFINITE ORDER OF MAPS AND THE INDEX d(X)

The following result provides some information concerning the statement in
Theorem 3.1.

THEOREM 5.1: For all a from a closed unbounded set in oy, if f : X—> Y is
a continuous map between compacta with ord f < a and d(X) = a, then d(Y) z a.
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Proof: We shall check the following:
Claim: For each E < w; there exists ¢(E) < wy such thatif f: X — Y is a
continuous map between compacta with ord f s & and d(Y) < &, then d(X) =< ¢(E).

Once the claim is established, the assertion will follow instantly. Indeed, let =
be a closed unbounded set of limit ordinals in w; such that if B < a and o € X then
@(B) < a. Let f : X — Y satisfy ord f < o and d(X) = @, for some a €Z. If § is
strictly between ord f and a, then d(X) > @(E), and by the claim, d(¥) > E. There-
fore, d(Y) = a.

To prove the claim, let us fix § < 0, and let Z CI” be the weakly infinite-
dimensional compactum described in Section 2.3.5.

We shall call a set A in the Hilbert cube 1° elementary, if A is a finite union of
cubes [ay, by] x ... x [a,, b,] xI x ... with rational a; < b;, and we shall say that a
regular partition of I” is elementary if it consists of elementary sets. We denote
by A the countable collection of all elementary partitions of I”.

For any pair (see Section 2.1)

(X, u) € K(I®) x CA*, I®),
we set (cf. Section 4, formula (1)),
A, u) = {AEA: NuintA N X): AE A} = D}.

As in the proof of Lemma 4.1, one checks that u restricted to X is finite-to-one
if and only if the order < is well-founded on A(X, u). Let 27 be the space of all
subsets of A with the pointwise topology. Since the map (X, u) —> A(X, u) from
KI) x C(I*, I”) to 22 is Borel, by the remark at the end of 2.4, the set

B = {(X, u): lengthA(X, u) = E} is Borel, (1)
and also the set
F = {(X, u) € B: u(X) C Z} is Borel.
Therefore, the projection parallel to the second axis,
proj E C K(I) is analytic.

Let X € proj £ , and let (X, u) € B. Then < is well-founded on A(X, u), and hence
u restricted to X is finite-to-one. Since u(X) CZ and Z is weakly infinite-dimen-
sional, we conclude that so is X [14]. By Section 2.3.6,

(E) = sup{d(X): X EprojE} < w;. (2)

Let us check that g(E) has the required property. Let f : X —— Y be a continuous
mapping between compacta, with ord f = & and d(Y) <&. We can assume that Y C
Z. We can also assume that X is embedded in I” in such a way that for each ele-
mentary set A in I®, the intersection of the boundary bdA with X has empty inte-
rior in the space X. Indeed, if we fix a countable set D dense in X, then for each
elementary set A and d €D, the set G(d, A) of embeddings # of X in 1% with h(d)
& bdA is residual in C(X, I*), and any h € N{G(d, A): d €D, A — elementary}
is an appropriate embedding. Let f*: I” — I” be a continuous extension of f.
The traces on X of elementary sets in I* are regularly closed in X, which provides
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an order <-preserving embedding of A (X, f*} into T (f) (cf. Section 4, (1)). There-
fore, length A(X, f*) s lengthI'(f) = ord f < &, hence (X, f*) € £ and X € projE.
By (2), d(X) = 9(&), which completes the proof. QO

6. FINITE-TO-ONE MAPPINGS AND THE
TRANSFINITE DIMENSION ind

A space is countable-dimensional if it is a countable union of zero-dimension-
al sets. Let ind be the extension by transfinite induction of the classical Menger-
Urysohn dimension [8, 1V.6.B], and [11, Definition VI.1]. For each completely
metrizable space X, indX is defined if and only if X is countable-dimensional, and
then indX < w;.

Hurewicz’s theorem on dimension-raising mappings [8, Remark, p.93], [11,
I1.6], asserts that if f : X— Y is a continuous mapping of finite order on a finite-
dimensional compactum, then

indf(X) < indX + ordf ~ 1.

We shall show that certain analogue of this theorem can also be obtained in the
transfinite case.

THEOREM 6.1: There exists a function A: wy x ®; —> @ such that for any
continuous finite-to-one mapping f : X —= Y on a countable-dimensional com-

pactum X,
indf(X) < A(indX, ordf ).

Proof: Let us fix countable ordinais n and E. By [12, Theorem 1.1] there ex-
ists a continuous function ®: w® —> K(I*) from the irrationals to the hyper-
space of the Hilbert cube such that for each X € K(1*) with indX s nthereisz €
»® with X = &(z), and :

ind{(z, x) €E0” x X(I%): x E®(2)} = . M

Let B be the set defined in the proof of Theorem 5.1 by formula (1). Then the set

F ={(z u) € 0® x CA®, I*): (P(2), u) € B} 2
is Borel. Let s — (v(s), w(s)) be a continuous map from ®” onto F. The set
F={(s,x) E0™ xI7: x € D(v(s))} 3)
is closed in ®® x I, and the mapping

k: F—s o xI%, (s, x) = (s, w(s)(x)) 4

is perfect, the projection parallel to I” restricted to F being pefect [3, Section 10].
As was stated in the proof of Theorem 5.1, if (X, u) € B then u is finite-to-one on
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X, hence by (2) and (3), w(s) is finite-to-one on the vertical section of F at s, and
in effect, k is finite-to-one.

From [12, 3.2] (where M = F, M is defined by (1), and ¢ = v ) we infer that indF
< 1), and hence F is countable-dimensional. Because finite-to-one perfect maps
preserve countable-dimensionality [11, Theorem VL.6], k(F) is a completely me-
trizable countable-dimensional space, and hence

AN, €)= indk(F) < . (5)

To end the proof, let us consider a continuous mapping f : X — Y of a compac-
tum X onto Y with ord f < & and indX s n. Let Y CI” and let (X, f*) be as at the
end of the proof of Theorem 5.1, in particular (X, f*) € B. For z € ®” such that
X = ®(z) we have then (z, f*) € F, and hence (z, f*) = (v(s), w(s)) for some s €
®®. We conclude that Y = f(X) = w(s)(X), is the vertical section of k(F) at s (see
(4)), and by (5), indY s A(®, . O
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Continuous Selections of Starlike-valued
Mappings

P.V. SEMENOV

Department of Mathematics
Moscow State Pedagogical University
Moscow, Russia

A nonempty subset M of a vector space V is said to be starlike if M can be rep-
resented as a union UM,, YET, of a centered family {M,} of a convex subset M,
C V. The purpose of thlS note is to find a condition for the existence of contlnuous
single-valued selections of arbitrary lower semicontinuous starlike-valued map-
pings from a paracompact into a Hilbert space. In other words, we try to general-
ize a well-known selection theorem of E. Michael [1] for lower semicontinuous
convex-valued mappings in the direction of eliminating the convexity condition.
The main technical point of the proof is another selection theorem of E. Michael
for paraconvex-valued mappings [2]. For simplicity, we consider the case of the
Hilbert space as the range of lower semicontinuous mappings. In a joint article
with D. Repovs [3], some other applications of selection theorem for paraconvex-
valued mappings were given.

In Section 1, we give an example which shows that, in general, the answer for
the question above is negative, even for mappings with values equal to the union
of two segments. Such an example is an analogue of the sin(1/x)-example (see
[1]). In Section 2, we give some sufficient conditions for an affirmative answer.
To formulate these conditions, we need the following preliminary definitions.

DEFINITION 1: Let {M,}, Y€ be a family of sets. For each subset E of the
union UM the set {yET: E N M, =D} is said to be the support of E and is de-
noted by supp(E)

DEFINITION 2: Let {M,}, y €T be a family of sets. A subset E of the union
UM is said to be an exact subset if E is finite and for every y € supp(E), the in-
tersectlon E N M, consists of a single point.

DEFINITION 3: Let p €[0, n]. A closed nonempty subset M of a Hilbert space
H is said to be B-starlike if M can be represented as a union UM y€&€T, of non-
empty convex subsets M, CH such that for each exact subset EC UM =M, there
exists y € 17 » 1€ supp(E) where the angle Zxyz is more than or equa] to B for
allx EE, ZEE X #2z.

Mathematics Subject Classification: 54C60, 65.
Key words and phrases: selections, lower semicontinuous maps, paraconvex sets, star-
like sets.
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THEOREM 4: Let BE (0, n]. Then any lower semicontinuous B-starlike-valued
mapping from a paracompact into a Hilbert space admits a single-valued contin-
uous selection.

A typical example of a B-starlike set is a B-bouquet M centered at the point y,
i.e., the union of convex sets M, such that M, N M, = {y}, and Lxyz =B, for all x
€ M\{y}, z € M3\{y}, v = .. We assume that Definition 3 automatically holds
when an exact subset E consists of a single point {y}: in this case there are no
angles Zxyz with x = z. Hence, every closed nonempty convex subset M C H is a
n-starlike subset of H. Indeed, we can put M =M UM and then each exact subset
E C M consists of a single point. Thus, Theorem 4 is a generalization of the se-
lection theorem of E. Michael for convex-valued mappings.

EXAMPLE 1: There exists a lower semicontinuous (in fact, continuous) map-
ping F: [0, 1] — R? such that all sets F(¢) with ¢ € [0, 1] are unions of two inter-
secting segments which admit no single-valued continuous selections.

Construction

Let {a,} be an arbitrary monotone decreasing sequence of positive numbers,
tending to zero and let ay = 1. Let b, = (a, + a, , 1)/2, ¢, = (a, , 1 + b,)/2, d, =
(b, +a,)/2. We put:

(a) F(an) = [(bm 1)7 (am "1)];

(b) F(dn) = [(an +1» _1)’ (bn’ 1] UF(an);

(©) F(by) =[(ap 1 1) (b DI;

(d) F(cn) =[(by 41, 1), (@p 41, =1) UF(by); and

(e) F(0) =[(0, 1), (0, D)].

When the parameter ¢ tends uniformily from a, to d,,, F(t) is equal to the union
of the segment F(a,) and the uniformly growing (from zero to F(b,)) segment.
When the parameter ¢ tends uniformily from d,, to b,,, F(t) is equal to the union of
the segment F(b,) and the uniformly shrinking (from F(a,) to zero) segment. For
t €[a, , 1, b,], the values for F(f) can be defined in an analogous manner.

In this example the set of all angles between segments which form the values
F(¢) has no positive infimum. Theorem 4 states that the existence of positive in-
fimum for all plane angels in this situation guarantees the existence of continuous
selections.

We shall use some (equivalent) modification of the original notion of «-para-
convexity, given in [2].

DEFINITION 5: Let a € R. A nonempty closed subset P of a Banach space B
is called a-paraconvex if for each n € N, each point xq, x5, ..., x, € P and for each
point q € [xy, X3, ..., X,] the distance dist(g, P) is less than or equal to a - Rad{x;,
X ey x,,}.

In this definition, [x{, x5, ..., x,,] denotes the convex hull of the points x;, x,,
..., X, and Rad{xy, x, ..., x,,} denotes the infimum of the radii of all closed balls
which contains all points xy, x5, ..., X,,. In the case of the Hilbert space there exists
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a unique closed ball with the radius Rad{xy, x5, ..., x,} which contains all points
X1, X35 «-- X3 we denote the center of this ball c(xq, X3, ..., Xp)-

THEOREM 6: [2] Let a €[0, 1]. Then every lower semicontinuous a-paracon-
vex-valued mapping from a paracompact into Banach space admits a single-val-
ued continuous selection.

Now we pass to the proof of Theorem 4. Our first lemma states that in the Hil-
bert space for a-paraconvexity of a set P, it suffices to control only the distances
dist(c(x1, X25 .+v X,), P) for x4, x5, ..., x,, from the set P.

LEMMA 7:* Let for each n € N and for each xy, x5, ..., x, from a closed subset
P of a Hilbert space H the following inequality holds

dist(c(x1, X, ..y Xp), P) s & Rad{xy, X3, ...y Xp}.

Then the set P is an oy-paraconvex subset of H, where (1 - a;) is the positive root
of the equation

a+2-2t=1-t
The following lemma shows the significance of the notion of exact subset.

LEMMA 8:* Let V be a vector space and let M,, y €T, be a convex subset of
V. Then

conv(UMY) = U{conv(E): E is an exact subset of UM.{}.

The following purely geometric lemma is the main technical point in the proof
of Theorem 4.

LEMMA 9:* Lety, xq, Xo, ..., X, be points in H such that for some § € (0, x]
and for all i = j, the following inequalities hold:

Lxyxj= .
Then there exists k € {1, 2, ..., n} such that
Lyxpcs (- B)2

where ¢ = c(xq, X9, ..y Xp)-

After Lemmas 7, 8, and 9, we can show that B-starlike subsets of a Hilbert
space H, B € (0, x], are in fact, a-paraconvex subsets of H, for some a = a(p) €
[0,1).

LetM = UMy, ¥ €T be the needed representation of p-starlike set M (see Def-
inition 3), and let g € conv(M). By Lemma 8, there exists an exact subset E = {xy,
X3, vy X} CM such that g € [xy, xy, ..., X,]. So, by Definition 3, we can find y €
ﬁMy, y € supp(E), such that Zx;yx; = B for all i = j. By convexity of M, and by
Lemma 9, we obtain that dist(c, M) < a - R, where c(xq, x5, ..., X,), R = Rad(xq, x,,
<ew X), 0 = sin((z ~ B)/2). So, by Lemma 7, we obtain the ay-paraconvexity of M,
for some a; € [0, 1) and an applicaton of Theorem 6 completes the proof of Theorem

4. O

4Proof in: 1996. Sib. Mat. Journal. 37: 399-405.
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ABSTRACT: Countable spaces with an only nonisolated point for which the free topological
groups are the inductive limits of the sets of words having restricted length are characterized.
It is proved for a collectionwise normal X that if its free topological group is the inductive limit
of the sets of words having restricted length, then any closed discrete set of non-P-points in X
is countable. All the results obtained are valid for both Abelian and non-Abelian free groups.

The free (Abelian) topological group F(X) (respectively, A(X)) of a completely
regular Ty space X in Markov’s sense is the free (Abelian) algebraic group of X
with the strongest group topology such that it induces the original topology of X.
In other words, any continuous map of X to an arbitrary (Abelian) topological
group G can be extended to a continuous homomorphism of F(X) (respectively,
of A(X)) to G.

Free topological groups and free Abelian topological groups were introduced
and first investigated by Markov [3], [4]. Algebraically, the free group F(X)of X
is the set of words

g=8"1...8.'"

where n is a positive integer or zero (in the latter case the word g is empty), €; =
z1, and g; EX for i = 1, ..., n. So, every nonempty word is the product of letters,
or the elements of the alphabet X UX-1, where X~! is a homeomorphic copy of X
such that X N X~ = &. The free Abelian group A(X) looks similar: it consists of
words

8§=¢81+ .- T Enp

whose letters are elements of the disjoint union of X and its homeomorphic copy
-X.

Let g1°1... g,°n be the reduced form of word g in F(X). The number n is the
length of g denoted I(g). We use the designation F,(X) for the set of all words in
F(X) the length of which does not exceed n with the topology induced by F(X).
The similar meaning is assigned to A ,(X): it is the set of all words in A(X) whose

Mathematics Subject Classification: Primary 22A05, 54B25; Secondary 54A25, 54D50.
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irreducible forms comprise at most n letters with the topology inherited from
A(X).

A space X = U,, cwoXp has the inductive limit topology (or is the inductive limit
of the sequence {X,}), if a subset U of X is open (closed) in X whenever U N X,
is open (closed, respectively) in X,, for all n. The inductive limit topology is also
called direct limit topology or weak union topology.

The paper is concerned with a well-known and still unsolved problem in the
free topological groups theory:

When is F(X) (A(X)) the inductive limit of {F,(X)} (respectively, of {A,(X)})?

Apparently, the problem was first formulated explicitly by Pestov and
Tkachenko in 1985 [11], but it was tackled as early as in 1948 by Graev [2], who
proved that the free topological group of a compact space has the inductive limit
topology. Then Mack, Morris, and Ordman [5] proved that the same is true for
k,-spaces. Apparently, the strongest result in this direction was obtained by
Tkachenko [10], who proved that if X is a P-space or if X is a so-called C,-space,
that is, X is the inductive limit of an increasing sequence {X,} of its closed sub-
sets such that all the finite powers of each X, are countably compact and strictly
collectionwise normal, then F(X) has the inductive limit topology. In this paper,
countable spaces with an only nonisolated point whose free topological groups
have the inductive limit topologies are characterized. The same characterization
is valid for free Abelian groups. It provides an example of a countable space with
an only nonisolated point that does not contain infinite compact subspaces and
whose free and free Abelian groups have the inductive limit topologies. Some
other results concerning free groups with the inductive limit topologies are also
presented.

We mostly will consider Abelian groups. All the necessary conditions obtained
for free Abelian groups are also true for non-Abelian groups due to the following
simple fact:

CLAIM 1: Let X be a completely regular Ty-space such that F(X) is the induc-
tive limit of {F,(X)}. Then A(X) is the inductive limit of {4,(X)}.

Proof: Let S CA(X) be such that for all n the set S, =S N A,(X) is open in
Ap(X). Let us show that § is open. Consider the natural homomorphism k: F(X)
—A(X). Put U = h‘l(S) and U, =h‘1(Sn) N F(X) for every n. For each n fix an
open in A(X) set V, such that V,, N A,(X) =S,. Because

U, =h"(V, NALX)) NF,X)
= (F71(V,) O RN ALQ0)) NF(X) = h7H(V,) NF(X),
each set U, is open in F,(X). On the other hand,
Un=h"(S NALX)) NF(X) = (h71(S) NATYALX)) NFy(X) = U NF,(X)

and F(X) is the inductive limit of {F,(X)}, therefore, U is open in F(X). The ho-
momorphism £ is open, because the topology of A(X) is the strongest one, hence,
S=h(U)isopen. 0O
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In what follows all spaces are supposed to be Tychonoff, all neighborhoods
and covers open, and all pseudometrics continuous.

Elements and subsets of A(X) are typed mostly in boldface to distinguish them
from those of X. For example, g = €181 + ... + £,8, Tepresents word g as the sum of
letters €;g;, while g = u +v represents this word as the sum of words # and v. The
zero of A(X), the empty word, is denoted as 0.

Letters k, I, m, n, p, q, r, s, and ¢ stand for positive integers.

Let y; and v, be covers of a set X. The relation y; < y, means that y; is a refine-

ment of y,.
For a pseudometric 4 on X, a positive number g, and x EX

By, ey={y € X: d(x,y) <&}

We need the following description of the topology of A(X) (recall that all pseudo-
metrics are supposed to be continuous):

CLAIM 2: (See [9].) Let X be a space. For a pseudometric d on X, put

n
Ud)={x1j-y1+x-y2+ ...+ Xy~ Yy RE O, E d(x,y;) <1}

i=1

The family
{U(d): d is a pseudometric on X}

constitutes a base at zero of the topology of A(X).

THEOREM 1: Let X be a space such that:

(a) F(X) can be embedded into the Tychonoff product of metrizable groups as
a subgroup;

(b) for any pseudometric d on X there exists a pseudometric p = d on X such
that for the metric space Y naturally associated with the pseudometric
space (X, p) (that is, obtained from (X, p) by identifying points with zero
p-distance), the free topological group F(Y) is the inductive limit of
{F,(")}.

Then F(X) is the inductive limit of {F,(X)}.

Proof: Let S C F(X) be such that for all n the set S, =S N F,(X) is open in
F,(X). We have to prove that S is open. To this end, it suffices to show that any
g € 8§ belongs to the interior of §. Take an arbitrary g € S. The openness of all
S, in F,(X) implies that for each n there exists a neighborhood U, of the identity
such that g - U, NF,(X) CS,, (if g €S}, i.e., I(g) = k, then U may be chosen so
that g - U, N F(X) = @, because all Fy(X) are closed in F(X) [4]). Condition (a)
implies that there exists a pseudometric d, on X such that the interior of the set
U, in the topology of the free topological group of (X, d,) contains the identity.
There exists a pseudometric d on X, with respect to which all the pseudometrics
d, are continuous. By virtue of (b), we can assume that F(X, d) has the inductive
limit topology. Hence, the interior of S in F(X, d) (the more so, in F(X))
contains g. QO
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In particular, condition (a) is fulfilled for any space such that the cardinality
of any discrete system of its open subsets is at most Rg [1].

The similar statement is true for Abelian groups; the proof is the same. Note
that any Abelian group can be embedded into the product of metrizable groups as
a subgroup, hence, for free Abelian groups the condition (a) should be omitted:

THEOREM 1": Let X be a space and assume that for any pseudometric d on X
there exist a pseudometric p = d on X such that the free Abelian topological group
A(Y), where Y is the metric space naturally associated with (X, p), is the inductive
limit of {A,(Y)}. Then A(X) is the inductive limit of {4,(X)}.

Theorems 1 and 1’ have the following corollary (though, it can easily be de-
rived from the fact that F(X) has the inductive limit topology for any compact X
[2] and that F(X) is naturally embedded into F(BX) for a pseudocompact X [6]):

COROLLARY: If a space X is pseudocompact, then F(X) and A(X) have the in-
ductive limit topologies.

THEOREM 2: Let X be a countable space with only one nonisolated point .
The group F(X)(A(X)) is the inductive limit of {F,(X)} (respectively, of {4,(X)})
if and only if for any collection {U,:n € w} of open neighborhoods of * there ex-
ists a neighborhood V of  such that VN (U\U, , 1) is finite for all n.

LEMMA 1: Let X be a countable space with only one nonisolated point %. Sup-
pose there exists a collection {U,: n € w} of open neighborhoods of * such that
U,,1 S U, for each n, and for any open neighborhood V of + there is z such that
[VNU\U,,1)| = Ro. Then A(X) is not the inductive limit of {A,(X)}.

Proof: Without loss of generality, we can assume that Uy = X and the set
U,\U, 1 is infinite for each n. Enumerate

Un\Un+1 = {xy: i € @}

and put
Fo={(xpm—*)+n(xij=+):i,jmEw, n<i<j<m}

for all n € . We show that each F,, is a closed discrete subset of A(X). Let Y =
{*} U {x,,: mE 0} and r: X — Y be the retraction that maps X\Y to {+}. Clearly,
Y is discrete and the map r is continuous. Let 7: A(X) — A(Y) be the canonical
homomorphic extension of the map r; then f continuously maps A(X) onto the dis-
crete space A(Y). For any g € A(Y) the set #-}(g) N F, is finite: if 71(g) N F, is
nonempty, then we have g = ?((x,,mo— *) +n(xi01~0— )} for some my, iy, jo € w such
that n <ig < jg <mg, Whence g = X, — * and

@) NF,= {(xnmo—*)+n(xij—*): i, jEw, n<i<j<mgy}.

Therefore, F,, is a closed discrete subspace of A(X).

Since F, C Agy , 2(X)\Agn » 1(X) for all n the set F = U,F, is closed in the in-
ductive limit topology. To prove the lemma, it is sufficient to show that 0 eF,
i.e., that for any pseudometric 4 on X we have U(d) NF = &.

Take an arbitrary (continuous) pseudometric d on X. As B,(x, %4) is a neigh-
borhood of «, it follows from the conditions of the lemma that the set M = {m € w:
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d(%, Xpy) < %)} is infinite for some n € 0. As B+, 1/2n) NU, , 1 is a neighbor-
hood of #, it follows from the conditions of the lemma that the set J = {j € w:
d(, x;j) < 1/2n} is infinite for some i > n. Take j €J such that j >iand m EM
such that m >j. Then g = (X, — %) + n(x;j—+) € F,. We also have g € U(d), because

1 1
d(*, Xpp) + 0 d(x, xij) <5 +n3. = 1.

Therefore, g € F,NU(d). Q

LEMMA 2: Let X be a countable space having an only nonisolated point #,
and let for any collection {U,: n € w} of open neighborhoods of x there exist a
neighborhood V of * such that V.1 (U\U, , 1) is finite for all n. Then F(X) is the
inductive limit of {F,(X)}.

Proof: Note that the condition of the lemma can be reformulated in the fol-
lowing way: for any pseudometric d on X there exists a neighborhood V of « such
that the metric space (V, d1V) is compact. This implies that for any pseudometric
d there exists a pseudometric p =d, for which (X, p) is locally compact. The space
(X, p) is also o-compact, because it is countable, therefore, it is a k,-space and
F(X, p) has the inductive limit topology [5]. Theorem 1 can be applied. O

Proof of Theorem 2. Combine the lemmas and Claim 1. Q

To any filter p on ® there corresponds a space w, = w U {p}: o is its disrete
subspace and neighborhoods of p are elements of the filter. Any countable space
with one nonisolated point can be represented as w, for some filter p on o. Note
that Theorem 2 can be reformulated as follows:

THEOREM 2": Let p be a filter on . The group F(w,)(A(wy)) is the inductive

limit of {F,(w,)} (respectively, of {A,(w,)}) if and only if for any collection {M,,:

n € o} C p there exists M € p such that M\M,, is finite for all n.

Filters satisfying the condition of Theorem 2 are called P-filters. An ultrafilter
p on o is a P-ultrafilter when and only when p is a P-point in Bo\w (see [8]).
Hence, we have:

COROLLARY: Let p be an ultrafilter on w. The group F(w,) (A(wp)) is the in-
ductive limit of {F,(w,)} (respectively, of {A(wp)}) if and only if p is a P-point
in po\w.

Professor W. Just kindly provided me with the following example:

EXAMPLE: There exists a P-filter p on o such that all compact subspaces w,
are finite.

Proof: Let
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Consider an arbitrary infinite subset b of . There exists an infinite ¢ C b, for
which the series 3, 1/(n + 1) converges. We have: a = w\c € p and b\a is infi-
nite, therefore, b U {p} cannot be compact.

Show that p is a P-filter. Let {a,: n € w} be a decreasing sequence of elements
of p; then {b, = w\a,: n € w} is an increasing sequence of subsets of w such
that 3, 1/(n + 1) < . For each n choose ¢, C b, such that b,\c, is finite and
S 1/(n+1)s1/n2 Putc=U, coc,. Then 3ye /(n+1) s 3, col/n? <, hence,
a=w\c € p. For each n, we have

a\an = ((D\C)\([D\bn) = bn\c c bn\cm
which is finite. Q

REMARK: Note that for the filter p given in the example, the space X = w, has
the following properties:
(a) F(X) and A(X) are the inductive limits of {F,(X)} and {A,(X)}, respec-
tively;
(b) X is a countable space with an only nonisolated point;
(c) all (pseudo) compact subspaces of X are finite, hence, X is not a k-space
and not a C-space.

THEOREM 3: Let X be a collectionwise normal space and A(X) be the induc-
tive limit of {A,(X)}. Then any closed discrete subspace of X containing no P-
points in X is at most countable.

LEMMA 3: Let X be a space, Y = {,: a €o;} be a subspace of X, and for each
« € w; there be a decreasing family {Ug ,:n € ®} of clopen neighborhoods of
such that

Inthan’"$*a and U, gNUp o=@ forf=a

and
x=U vy,

Then A(X) is not the inductive limit of {4,(X)}. Q

For each o € »;\o, enumerate the set o as {B, ;: i €0} Put Cy =Ug n\Uq ns1
for a € wy and

Fa’n={x—*a+n(y—*ﬁa i):xECa,n, YECg, ;m and n <m <i}

F,= n

a€ofo *
for a € wy and n € w. We show that each set F,, is closed in A(X). Let n € . Put
Y={Uq n: 0 € w1} U{Cq: k <n, a€Ew} and
H ={3; .4 (x;-y;): for all i there is O; Ey such that x;, y; € O;, k E w}.

Since y is a partitioning of the space X into clopen subsets, H is a clopen subgroup
of A(X). If g € Fg ,, then Fy , C g + H and the sets Fo , + H and Fp , + H are
disjoint for distinct o, B € o;\w. Therefore, each element of the clopen partition-
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ing {g + H: g EA(X)} of the space A(X) meets at most one set Fg, n and to prove
the closedness of F, in A(X) it suffices to show that F, , is closed in A(X) for
each a € w;\w. Put

0, = {Ca, n Ua, O\Ca, nt U {Cﬁa’i,m’ Uﬂa’i,O\Cﬁa’i,m: n<m<i},
o={x\Us,} UB,, and
P ={3; i(x;~y;): forall i there is O; € 8 such that x;, y; € 0;, k € o}

Since 8 is a partitioning of the space X into clopen subsets, P is a clopen subgroup
of A(X). If g EA(X) and the set M =F, , N (g + P) is nonempty, then we have

M={x—*a+n(y—*5a,i):xe Co, yECﬁa,i’m}

for some m,i Ew, n <m <i and therefore, M is closed in A(X). The family {g +P:
g EA(X)} is a clopen partitioning of the space A(X), hence F , is closed in A(X).

Clearly, F, C Ay, , 2(X)\A2,(X), and as is shown above, F, is closed in A(X).
Therefore, F,, is closed in Ay, , 2(X). Put

F=U F,.
neo
To complete the lemma proof, it remains to show that 0 € F, i.e., that for any
(continuous) pseudometric d on X the neighborhood U(d) of unity intersects the
set F.

For each a there is ng such that By(+4, 1/2) intersects the set Cq o We may
therefore fix n such that A = {a: n = ng} is uncountable. Using the sets Cy_, once
more we can find an uncountable set A’ CA and m >n such that B(+4,1/2n) meets
Cq,mforall a €EA".

Choose o €A’ such that A’ N o is infinite, and take i > m such that B, ; EA".
Finally pick x €B(x, 1/2) NCq nand y € By(xp_ . 1/2n)) NCy_ . p- It is readi-
ly verified that ’ ’

x_*“+n(y_*l5a i)EU(d) nF,,

which completes the proof. 0O

LEMMA 4: Let x be a non-P-point of the regular space X. Then there are a
closed subspace Y of X and a decreasing sequence {C,}, e, of clopen sets in ¥
such that x & Inty [, C,.

Proof: Let {U,}, e, be a decreasing sequence of neighborhoods of x such
that U, +Lj C U, for all nand x & Int ﬂ,, U,. Foreachnput D, = U\U, .1 LetY;
={x} UU, qqaDpand Y= {x} U Un even D

Then Y{ and Y, are closed and either

x & Inty, (1, (U, NYy) orx & Inty, N, U, N Y.

For if O; and O, are open sets containing x such that 0; NY; & ﬂ,, U, NY;) for
i=1,2then 0; N0, C N,U,, a contradiction.

So one of Y; and Y, may be chosen as Y and we can then let C, = U, NY for
all n. O
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LEMMA 5: Let X be a collectionwise normal space and Y = {+,: a E w;} be
a closed discrete subspace of X which does not contain P-points in X. Then there
exists a closed subspace Z of X such that for each o € w, there is a decreasing
family {Uq, »: n € 0} of clopen in Z neighborhoods of *, for which

Inthan’nié*a and U, ¢NUp o=@ for P=a

and
Z= Uy o

- acCw]

To prove the lemma, it suffices to take a discrete family {U, & *o: @ € 01} of
open sets in X (it exists, because X is collectionwise normal), apply Lemma 4 to
each of the sets U, and replace it with a closed set containing #, which has the
desired decreasing sequence of clopen sets.

Proof of Theorem 3: Suppose, there is an uncountable closed discrete sub-
space of X consisting of non-P-points. According to Lemmas 3 and 5, there is a
closed subspace Z of X such that A(Z) is not the inductive limit of {A,(Z)}. As X
is collectionwise normal and Z is closed in X, Z is P-embedded in X, that is, any
continuous pseudometric defined on Z can be extended to a continuous pseudo-
metric on X [7]. It follows [9] that A(Z) is naturally embedded in A(X) as a closed
subgroup. Let F be any subset of A(Z) such that all the intersections F N A,(Z)
are closed. Then F has the same property in A(X): all the intersections F N A (X)
are closed. Therefore, F is closed in A(X) and in A(Z). Thus, A(Z) is the inductive
limit of A,(Z), which is not so. O
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The Gs-topology, Light Compactness, and

Pseudocompleteness
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ABSTRACT: Baire category arguments generally support far stronger properties. In partic-
ular, these properties, such as Oxtoby’s pseudocompleteness, are generally productive, whereas
the Baire property is not. We show in the main theorem that the Gg-expansion of a regular light-
ly compact space is pseudocomplete. This leads to intrinsic proofs of some cardinality results
of Comfort and Robertson for pseudocompact topological groups—they had noted and used the
fact that the Gz-expansion of such a group topology is Baire. In particular, these new proofs
avoid the Weyl completion, which, in this context, is the Stone-Cech compactification. The pa-
per also contains an example of a topological group of smallest cardinality whose Gg-expansion
is not Baire, as well as some related questjons.

As this work assumes no separation properties, we use the descriptive term G-
space for any topological space whose topology is closed under countable inter-
sections. For Tyy,-spaces, these are usually termed P-spaces (see [6]). For a topo-
logical space (X, T7), let GoT be the weakest topology stronger than T for which
(X, GoT) is a Gg-space; in fact, G457 is the expansion of the original topology by
its Gg-sets. We follow Bagley, Connell, and McNight, Jr. [2] in calling a topolog-
ical space lightly compact if every locally finite collection of open sets is finite;
this is equivalent to the property, each countable filterbase ‘U of open sets has a
cluster point, i.e., M{clU : U€E U} = D (see [7]). Lightly compact spaces are also
called feebly compact (see [12]). A topological space is a Baire space if the in-
tersection of each countable family of dense open sets is dense. The pseudocom-
pleteness of J.C. Oxtoby [11] is convenient in that it includes all the standard
properties that imply that a topological space is a Baire space. In particular, com-
pact Hausdorff and completely metrizable spaces are pseudocomplete. As modi-
fied in [13], pseudocompleteness also has an illuminating version for
bitopological spaces; this is discussed in [8]. We will give the needed definitions
for pseudocompleteness shortly. By a pseudocompact space is meant a topologi-
cal space on which every continuous real-valued function is bounded.

Mathematics Subject Classification: Primary 54E52, 54G10; Secondary 22A99, 54A10,
54A25.

Key words and phrases: Baire spaces, pseudocomplete, lightly compact, pseudocom-
pact, cardinality, cellularity, pseudocompact topological groups.
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In his handbook article [3], W.W. Comfort discusses and proves the following
results from Comfort and Robertson [4] on density character d(PG) and its cofi-

nality cf(d(PG)).

THEOREM: (Comfort and Robertson) Let G be a nondiscrete pseudocompact
topological group. Then

() |G|=z¢;

(ii) d(PG) =c; and

(iii) cf(d(PG)) > w.

The proofs make significant and interesting use of the Weyl completion G,
which, in this context, is the Stone-Cech compactification G of G. This emphasis
is quite understandable in an article on topological groups and well illustrates the
“unusual luxury” of being able to identify and use this particular maximal com-
pactification. Sections 6.12 and 6.13 in [3] contain discussions of these matters
and outline some alternative results and proofs, all still of an extrinsic nature.

The first two conclusions of the above theorem follow directly from Corollary
5 below. In the original proof the second follows from an interesting and involved
application of the first; in the proof here, the two follow from a lower bound on
cellularity ¢(PG). Originally only the proof of the third conclusion used the fact
that PG is a Baire space; here the proof of the first two involve pseudocomplete-
ness of PG, which implies the Baire result. This property is established in Corol-
lary 3 below. All proofs of theorems here are intrinsic, quite elementary in
technique, apply to rather general spaces, and involve the pseudocompleteness
property.

The following lemma is crucial for proof of the main theorem. To prove it, we
use the open filterbase characterization of light compactness. By a strongly nest-
ed sequence of sets we mean a sequence (C,), for which each intC, contains
cIC,,1- Also note, for later use, that a regular closed set inherits the lightly com-
pact property (see [2, Theorem 14]).

LEMMA 1: If a regular open set U = intclU of a lightly compact space (X, T)
contains the intersection F = nn C,, of a strongly nested sequence (C,),, then U
contains all but a finite number of terms of the sequence (C,),.

Proof: 1If, for some n, intC,\clU = @, then C, , 1 C U, and the conclusion
holds. Suppose there is no such n, then (int C,\cll), is a countable filterbase of
open sets, and, as (X, T') is lightly compact, ﬂ,, cl(int C,\clU) = @. Now, for each
n, C,\U D clC,, {\ U, so that C,\U D cl(int C,, , 1\clU). Therefore, & = F\U D
N,cl(int Cp,, 1\clU) =@, a contradiction. 0O

By a pseudobase for a topological space (X, T') we mean a collection B of sub-
sets such that (i) for each B € B, int B = & and (ii) for each nonempty U € T
there is a B € B, with U D B. (If all elements of B are open, it would be a pseudo-
base according to [11] or a m-base according to other authors.) We say a topolog-
ical space is quasiregular if each nonempty open set contains the closure of a
nonempty open set; equivalently, there is a pseudobase of closed sets. A quasi-
regular space (X, T) is pseudocomplete if there is a sequence (B,), of pscudo-
bases such that ﬂ,, B, =@, whenever each B, € B, and int B, DclB, ,, forrn=1,
2, .... (Henriksen et al. [8] show that, with the above definition of pseudobase,
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the strong nesting of (B,), may be replaced by nesting, i.e., each B,DB,, 1)1t
is easily verified that a pseudocomplete space is a Baire space (see [11], [13]).
The main theorem applies these properties to the Gg-expansion of a topology.

MAIN THEOREM 2: If each point of a regular topological space (X,7) has a
lightly compact neighborhood, then the Gg-space (X,GsT) has a base of clopen
sets such that each descending sequence of nonempty members of this base has a
nonempty intersection. Consequently, (X, GsT) is a pseudocomplete space, and
so also a Baire space.

Proof: ForxeUgE T, let C be a lightly compact neighborhood of x. By reg-
ularity, there is an open neighborhood V of x with clV C UnNintC. As (C, T|C)
is lightly compact, (clV, T |c1V) is also by the remark before Lemma 1. Therefore,
each point has a neighborhood base of regular closed lightly compact sets. There-
fore, the collection C of nonempty regular closed lightly compact sets is a
pseudobase of closed sets and provides a base {intC:CeCU{B}C T for the
original topology. Let B consist of all B = N, C, where each C, € C and (Cp),,
is strongly nested. Note that B is closed under finite nonempty intersections.
Since the sequence (C,), of closed sets is strongly nested, the set B = ﬂn C, =
ﬂ,, int C, is a closed Gg-set which is nonempty because C, is lightly compact.
Thus B is a collection of nonempty clopen sets of (X, GT).

Suppose x € VE GyT . There is a sequence (Uy), in T with x € N,U,CV.By
an induction argument, there is a strongly nested sequence (C,),, of closed neigh-
borhoods of x in C with ﬂ,m +1Ue DU, 1 NintC, DC, . Therefore, B = ﬂn
C, is an element of B C GsT,andxEB = ﬂn c, C ﬂ,, U, CV. Thus the col-
lection B U {@} is a base of clopen sets for (X, GsT).

We need to show that each descending sequence (B,,), in B has a nonempty in-
tersection. For each n, there is a strongly nested sequence (C,, ), in C with B, =
ﬂm C,, m- An induction argument gives an increasing sequence (m,), such that,
for each n,

Cn+l,mn+1c(int Cn,mn)n(nl<n+lint Cl,n)'

The argument uses Lemma 1 to show the existence of the set on the left, since the
set on the right contains B, , 1 and is a regular open set. (To start the argument,
we may define my=1.) Now (C,, ’"n)" is a strongly nested sequence in C with each
C containing B,. Moreover,

n,my,
B= r-]an= nn(nl<n+lcl,n)D ﬂn Cn,mn:)B’

thus B = ﬂ,, Cp,m is in B, and so is nonempty, as required.
Since (X, Gaﬂ has a base B U {@} of clopen sets it is regular. Letting each
B, equal B, we sece that (X, GsT) is pseudocomplete. QO

We may note that the proof actually establishes that (X, BsT) enjoys the count-
ably subcompact property, a completeness type property stronger than
pseudocompleteness (see [1]).

Theorem 3 of [2] states that a T3y,-space is lightly compact if and only if it is
pseudocompact. So a topological group G is lightly compact if and only if it is
pseudocompact. Following Comfort [3], we denote G with its Gg-topology by PG.
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In [3], PG is stated to be Baire if G is pseudocompact; the Weyl completion, G,
which, in this context is the Stone-Cech compatification PG, is suggested as the
site of the proof. The above gives somewhat more and with no appeal to the Wey!
completion G, as follows.

COROLLARY 3: If G is a pseudocompact topological group, then PG is
pseudocomplete and so is also a Baire space.

Proof: Direct. Q

W.W. Comfort [3, 6.13] notes a result of E.K. van Douwen [5] that a nonempty
pseudocompact T3y-space X with no isolated points has cardinality at Jeast c. The
suggested proof uses a Cantor tree argument applied to BX. As the following
shows, a Cantor tree argument may be applied directly to the space itself to obtain
cardinality results not restricted to T3y-spaces. Of course, the T3y-space cardinal-
ity result of van Douwen then follows immediately, once it is realized that a qua-
siregular lightly compact space is pseudocomplete (see [13, Proposition 2.4}).

By a rare set we mean one whose closure has empty interior; this is also known
as a nowhere dense set [9, p. 145]. We extend this to say that a rare point is a
point whose singleton set is rare. (Note that a Ty-space with no isolated points has
all singletons rare.)

THEOREM 4: A nonempty pseudocomplete space (X, T) with a dense set of
rare points satisfies |[X| = d(GyT) = c(GsT) =c.

Proof: Only the last inequality involving the cellularity of the Gs-expansion
need be shown as the others always hold. We use the following: Suppose U is an
nonempty open set. There is a rare point x in U. Since {x} is rare, U\cl{x} is a
nonempty open set. As X is quasiregular, there is a nonempty open set Uy with
clUy CU\cl{x}. As U\clUj contains x, it is a nonempty open set. Again by qua-
siregularity, there is a nonempty open set Uy with clUy CU \ ¢clUg. Thus Uy, Uy
are nonempty open sets such that clUg, clUy are disjoint subsets of U.

Suppose (B,), is a sequence of pseudobases as required by the definition of
pseudocompleteness. Let B(&) =X, By = {X} and n 20. Assume that the subsets
B(f) with f& U{ k9 : 0 <k <n)} satisfy: For each 0 sk <n and fE*2,

(i) B(f U {(k, 0)}) and B(f U {(k, 1)}) are members of B, , 1, and

(ii) c1B(f U {(k, 0)}) and cIB(f U {(k, 1)}) are disjoint subsets of int B(f).
This may be extended with n + 1 replacing n as follows. Let f€"2. As B(f) € B,
int B(f) = &. From an earlier observation, there are nonempty open sets Ug, Uy
with clUg, clU; disjoint subsets of int B(f). As B, 1 is a pseudobase, it has ele-
ments B(f U {(n, 0)}), B(f U {(n, 1)}) contained in Uy, Uj, respectively, whose
closures are, necessarily, disjoint subsets of B(f). As these exist for each f€ "2,
the induction step is complete, and we conclude that, foreach k¥ Ew and f € ko,
we have B(f) satisfying (i) and (ii) above. Let g € 2. Foreachn=1,2, ..., B(g|n)
€ B, and int B(g|n) D cl B(g|(n + 1)). Therefore, M,B(g|n) =@. Let B(g) be this
nonempty Gg-set. For distinct g,k € ©2, g|n, h|n are distinct for large enough n,
so there is n € o with B(g|n), B(h |n) disjoint. Therefore B(g) and B(k) are disjoint.
Thus, the collection {B(g): g € ®2} has cardinality |*2| = ¢, consists of disjoint
nonempty open subsets of (X, G ), and so its cellularity ¢(GT) is greater than
orequal toc. Q1
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The following corollary of this theorem gives the first two conclusions of the
theorem of Comfort and Robertson above.

COROLLARY 5: A nondiscrete Hausdorff topological group G that is locally
pseudocompact satisfies |G| = d(PG) =c(PG) =zc.

Proof: Let C be a pseudocompact, therefore lightly compact, neighborhood
of the identity e. As G is regular, there is an open neighborhood U of e with clU
C intC. The nonempty T3y-space clU is lightly compact in its subspace topology.
As it has no isolated points, points of X = U are rare. Since X is a nonempty open
subset of G, the corollary follows from Theorem 4, once we see that X is
pseudocomplete. The sequence (B,), with each B, = {clV: Vis open and non-
empty and clV C U} provides the required pseudobases as each member clV is
lightly compact. (O

The following example embodies a quite general construction of topological
spaces with a Gg-expansion that is not Baire. The specific application provides
an Abelian topological group G whose Gg-expansion, PG, is an Abelian topolog-
ical group that is not Baire. It also illustrates that a nondiscrete P-space may have
cardinality w; < c for models of set theory for which the continuum hypothesis
is false. Of course a nonzero countable cardinality is not possible as each single-
ton would be a Gg-set and so isolated in PX. This example arises from one of R.D.
Kopperman [10] which the author greatly appreciates. The author is also happy
to thank Paul Meyer for his informative discussions on this and many other top-
ics, as well as the referee who encouraged a clarifying brevity throughout this pa-
per.

EXAMPLE 6: Let G be the topological subgroup of Z,”1 consisting of all fi-
nitely nonzero elements, i.e., G ={x € Z,°1: {0 € o x(a) = 0} is finite} with
its topology inherited from the product topology on Z,“1 where each factor, Z,
= {0,1}, has its discrete topology. The topology on G is generated by the neigh-
borhood base at 0, U = {Ug: F is a finite subset of w;} where Up = {xEG: x(a)
=0 for « € F}. As countable intersections of these contain terms of the descend-
ing w;-sequence, Uy = {xEG: x(B) = 0 for B <a}, and these terms are countable
intersections of members of U, the collection V = {U,: a <w¢} and its translates
provide neighborhood bases at points of G for its Gg-topology. This provides the
topology for the P-space PG. Let G, = {xEG: Ho € wy: x(a) =0} | =n}; we shall
say that the members of G,\G, _are of rank n. As each member of G is finitely
nonzero, G = U,,G,,. If x is of rank greater than n, then x(a) = 0 for more than n
elements a € ;. Let F = {a € wy: x(a) = 0} and let g be an element of wq larger
than all elements of F. Now consider x + U, . Any member y of this PG-neigh-
borhood of x must agree with x on all a <ayg; in particular, y(a) = x(a) =0 for o
€ F. Since |F| > n, y is of rank greater than n, i.e., y EPG\G,,. Therefore, G, is
closed in PG. We now show its complement is PG-dense. Suppose x is in G, and
define x4 € G, by requiring x,(p) to equal 1 for o= B and, 0 otherwise. Also note,
by an argument similar to the above, that for large enough a € wy, x + S:Z:l Xk
is in the complement of G,. Moreover, limg_,, (x + 2":1 Xq 4+ k) is x. Therefore,
G\G,, is an open dense set of PG, yet ﬂn(G\G,],) = 6\U,G, = @,s0 PG isaP-
space that is not Baire. Q
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QUESTIONS 7: It is easy enough to find a pseudocomplete space with a stron-
ger topology for which it is not a Baire space. (Any infinite dimensional Banach
space together with its strongest locally convex topology furnishes an example.)
What about one with a non-Baire Gg-expansion? (A first countable space won’t
do as its Gg-expansion is discrete.) In the same vein, a non-Baire space may have
a stronger pseudocomplete topology. (An infinite dimensional Banach space with
its weak topology satisfies this.) What about a non-Baire space with a
pseudocomplete Gg-expansion with no isolated points? The next and final ques-
tion is more vague: As with the first two conclusions of the Comfort and Robert-
son theorem stated at the beginning, can the third be restated more generally
(without algebraic hypotheses) and proved intrinsically using elementary tech-
niques?

REFERENCES

1. AARTS, J.LM. & D.J. LUTZER. 1974. Completeness properties designed for recognizing
Baire spaces. Dissert. Math. 96.
2. BAGLEY, R.W., E.H. CONNELL, & J.D. MCNIGHT, Jr. 1958. On properties characteriz-
ing pseudo-compact spaces. Proc. Amer. Math. Soc. 9: 500-506.
3. COMFORT, W.W. 1984. Topological groups. /n: Handbook of Set-Theoretic Topology
(K. Kunen and J.E. Vaughan, Eds.). 1143-1263. North-Holland. Amsterdam.
4. COMFORT, W.W. & L.C. ROBERTSON. 1985. Cardinality constraints for pseudocom-
pact and for totally dense subgroups of compact topological groups. Pacif. J. Math.
119: 265-285.
5. VAN DouweN, E.K. 1980. The weight of a pseudocompact (homogeneous) space
whose cardinality has countable cofinality. Proc. Amer. Math. Soc. 80: 678-682
6. GILLMAN, L. & M. JERISON. 1960. Rings of Continuous Functjons. D. Van Nostrand.
New York.
7. HAJEK, D.W. & A.R. ToDpD. 1975. Lightly compact spaces and infra H-closed spaces.
Proc. Amer. Math. Soc. 48: 479-482
8. HENRIKSEN, M, R. KOPPERMAN, M. RAYBURN, & A.R. ToDD. The Baire Unification
Problem Revisited. In preparation.
9. KELLEY, J.L. 1955. General Topology. D. Van Nostrand, Princeton, New Jersey.
10. KOPPERMAN, R. 1994. Personal communication.
11. OXTOBY, J.C. 1961. Cartesian products of Baire spaces. Fund. Math. 40: 157-166.
12. PORTER, J.R. & R.G. WooDs. 1988. Extensions and Absolutes of Hausdorff Spaces.
Springer-Verlag. New York.
13. TopD, A.R. 1981. Quasiregular, pseudocomplete, and Baire spaces. Pacific J. Math.
95: 233-250.




On the Product of a Compact Space with an
Absolutely Countably Compact Space

JERRY E. VAUGHAN

Department of Mathematics
The University of North Carolina at Greensboro
Greensboro, North Carolina 27412

ABSTRACT: We show that the product of a compact sequential T-space, with an absolutely
countably compact T5-space, is absolutely countably compact, and give several related results.
For example, we show that every countably compact GO-space is absolutely countably com-
pact, and that the product of a compact T,-space of countable tightness with an absolutely
countably compact, w-bounded T3-space (in particular a countably compact GO-space) is abso-
lutely countably compact.

1. INTRODUCTION

A space is called countably compact provided every countable open cover has
a finite subcover. A characterization of countable compactness (see [5,
3.12.22(d)] or [4]) states that a T-space X is countably compact iff for every open
cover ‘U of X there exists a finite set F C X such that

S{F,U)=U{UEU:UNF = D} =X.

M.V. Matveev [11] defined a space X to be absolutely countably compact (acc)
provided for every open cover ‘U of X and every dense D CX, there exists a finite
set F C D such that St(F,'U) = X, and noted:

T
compact => acc =% countably compact.

It is an interesting fact that the acc property is not necessarily preserved by
products with compact spaces (see [11, Example 2.2]). Concerning this, Matveev
proved [11, Theorem 2.3] that if Y is a compact and first countable space, and X
is an acc T,-space, then X x Y is acc, and he raised the question:

QUESTION 1.1: (Matveev [11, Question 2.4].) Is X x Y acc provided Y is a
compact space with countable tightness and X is an acc T,-space?

We recall a few definitions. A space X has countable tightness provided that
whenever x €A there exists a countable C CA such that x €7C, and X is called a
sequential space provided every sequentially closed set is closed (a set A CX is
sequentially closed if and only if A contains all limits of all convergent sequences

Mathematics Subject Classification: 54D20, 54B10, 54DSss.
Key words and phrases: compact, countably compact, absolutely countably compact, w-
bounded, countable tightness, sequential space.
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from A). Every sequential space has countable tightness, see [5, 1.7.13(c)]. In
Section 2, we prove our main result (in ZFC):

THEOREM 1.2: If Y is a compact sequential T)-space, and X is an acc T3-
space, then X x Y is acc.

With Theorem 1.2 and the following well-known theorem, we can give an af-
firmative answer to Matveev’s question provided we assume the proper forcing
axiom [PFA] (Question 1.1 remains open in ZFC).

THEOREM 1.3: (Z. Balogh [2]) (PFA) Every compact Hausdorff space of
countable tightness is sequential.

We also consider further conditions under which the product of a compact
space with an acc space is acc. There may be some relevance of these conditions
to Matveev’s Question. If in some model of set theory there is a counterexample
X x Y to Question 1.1, then Y must be a compact nonsequential space with count-
able tightness, and X must be an acc space which is not w-bounded and does not
have countable density-tightness (defined below). A space is called w-bounded if
every countable subset is contained in a compact set [9]. In Section 3 we prove:

THEOREM 1.4: X xY is acc provided Y is a compact Tp-space of countable
tightness and X is an acc, w-bounded T3-space.

We also obtain the next result concerning GO-spaces (generalized ordered
spaces, i.e., spaces which are subspaces of some linearly ordered topological
space; see [8]).

COROLLARY 1.5: X xY is acc provided Y is a compact T,-space of countable
tightness and X is a countably compact GO-space.

Corollary 1.5 follows from Theorem 1.4, the following easy result Lemma 1.6,
and the facts that every countably compact GO-space is w-bounded [9, Theorem
3], and every GO-space is orthocompact [8, 5.23]. Recall that a space is called
orthocompact if every open cover ‘U has an open refinement V such that for ev-
ery V' CV, we have NV’ is open [14], [8].

LEMMA 1.6: Every countably compact, orthocompact space is acc.

The converse of Lemma 1.6 is false. The 2-product
X={xe2°: {oa<w;:x(a) =1} s w}

is acc [11, Theorem 1.9], but not orthocompact [14, Example 4.3].
These results also reveal an interesting class of acc spaces:

COROLLARY 1.7: Every countably compact GO-space is acc.

We mention that w-bounded spaces need not be acc [11, Example 2.2].
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DEFINITION 1.8: The density-tightness of a space X, denoted d,(X), is the
smaliest infinite cardinal k such that for every dense subset D CX and every x €
X there exists E € [D]* such that x € cly(D).

Clearly, d,(X) s t(X), and these need not be equal. For example, any space with
a countable dense set of isolated points has countable density-tightness, but of
course, need not have countable tightness. Countable density-tightness was intro-
duced by Matveev using different terminology [11].

THEOREM 1.9: X x Y is acc provided Y is a compact Tp-space with countable
density-tightness, and X is an acc T3-space with countable density-tightness.

This theorem follows at once from the following two results.

LEMMA 1.10: (Matveev [11, Lemma 1.7]) If X is countably compact and has
countable density-tightness then X is acc.

THEOREM 1.11: If Y is locally compact, then
dX xY) = max{d,(X), d,(V)}.

The proof of Theorem 1.11 is similar to that of Malyhin’s analogous result
concerning tightness [10]. Since locally compact spaces need not be countably
compact, one cannot replace “Y is compact” by “Y is locally compact” in Theorem
1.9. One can, however, replace “Y is compact” by “Y is locally compact and Y has
property P” where P is any property such that the product of a countably com-
pact space with a space having property P is countably compact (for example,
take P to be “sequential compactness,” see [15, 3.4, 3.9D).

We conclude this section with several questions.

QUESTION 1.12:  (A. Arhangel’skil; see [11, 1.12].) Does countably compact
+normal = acc?

In light of Corollary 1.7, it now seems reasonable to ask the following two
questions:

QUESTION 1.13: Does countably compact + monotonically normal => acc?
QUESTION 1.14: (A. Bella) Does countably compact + radial = acc?

NOTE ADDED IN PROOF: Both of these questions have been answered in the
affirmative. See “From Countable Compactness to Absolute Countable Compact-
ness,” by Mary Ellen Rudin, Ian S. Stares, and Jerry E. Vaughan (to appear).

The results in this paper were announced in two preliminary reports [171, [18].
Further results about acc spaces can be found in [3], [12], [13], and [16].

2. PROOF OF THEOREM 1.2

We use the following standard notation: for a set D, [D]<® denotes the set of
all finite subsets of D, and [D]® denotes the set of all finite or countable subsets
of D. If D is a subset of a topological space X, the Rg-closure of D [1] is
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[Dlx, = {xEX: @CE DI*)x € (%))

Proof (by contradiction): There exist an open cover ‘U of X x Y and a dense
set D C (x, y) such that for all G € [D]<, St(G,'U) does not cover (x, y). Since
X x Y is countably compact (X is T,), we may assume further that for all G €[D]®,
St(G,"U) does not cover (x, y). Now we show that this inability to cover X x Y can
be demonstrated by a single point of Y. For all G € [D]® define Fg = {y EY:
GAxEX) ((x, y) & St(G, U)}. Since Y is a sequential space, and X is countably
compact, my is a closed mapping by a theorem of Fleischer and Franklin [6]. Thus
each set Fg is closed in Y, since Fg = ny{((X x Y) - S#(G,U)) is a closed set in
(XxY). Thus

F={Fg: G €[D]*} 0

is a filter base of closed sets in Y; so by compactness there exists y € N F. Clear-
ly,
VG € [D]%, S{G, U) does not cover X x {y}. 2

CLAIM: For this y there exists a nonempty open set V C X such that
(Vx {}) N [Dly, = 2.

First we note that the Xg-closure of D is not dense in X x {y}: Otherwise if £ =
(X x {y}) N [D]y,) is dense in X x {y}, then by acc, there exists a finite E' CE
such that S#(E’, ‘U) covers X x {y}. For each e EE there is a countable D, & [D]®
such that e € cl(D,), but this implies that

X x {y} CS«(E', U) CSHU{D, : e€ E'},U)
which contradicts (2). Hence, there exists a nonempty open V C X such that

v x ) N [Dlx, = 2-

Since X is regular, we may assume that
Vx {yHN [Dlx, = 2. 3

This proves the Claim. Now we show that the set Z = n((V xY) N [D]No) is se-
quentially closed in Y: Let (z;) be a sequence in Z that converges to a pointz €Y.
For each i € w there exists ;€ (V xY) N [D]N0 such that my{e;) = 2;. By countable
compactness, there exists a limit point p of the sequence (e;), and since (z;) con-
verges to z and Y is Hausdorff, we have my(p) = z.

Clearly, p€(VxY)N[D] Ry and therefore z& Z. Thus, Z is sequentially closed,
and since Y is sequential, Z is closed in Y. Since D is dense in (X x Y), hence in
V x Y, we see that Z is dense in Y; so Z = Y. Thus y € Z, but this contradicts (3),
and completes the proof. QO
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3. PROOF OF THEOREM 1.4

The proof requires only minor changes from that of Theorem 1.2 . To begin,
we proceed as in the proof of Theorem 1.2 and construct the filter base F in (1),
but this time we do not know that the sets Fg in J are closed in Y; so we cannot
be sure that there exists y € NF. Instead, by compactness there exists

yEﬂ{F;:GE[D]‘”}.
CLAIM: For this y there exists a nonempty open set V C X such that

Vx{yH N DIk, =2. 4

As before, we show that [D]y,, is not dense in X x {y}. Otherwise, by acc, there
exists a finite F C[D]y , such t?lat SH(F,U) DX x {y}. Since eachx EF is in [D]N0
it follows that there exists G € [D]® such that S#(G,U) DX x {y}. Since y € Fg,
by countable tightness of Y, there is a countable Z C Fg such thaty €Z. Let Z =
{z 1 i < 0}, and let u € fw\w such that y = u - limz; (e.g., see [15, Section 4]).
Pick x; € X such that (x; z;) & St(G,U). Since X is w-bounded, there exists x EX
such that x = u - limx;, and thus (x, y) = u - lim(x;, y;). But this is impossible be-
cause (x, y) € S#(G,U) and the (x;, ;) & St(G, U). By T3, this proves the Claim.

Now let V satisfy (4). By countable tightness of Y there exists a countable C =
{z;: i < o} such that

CCay((VxY)ND)andy€EC.

For each i € o pick x; §V so that (x; z;) € ((V xY) N D). As in the proof of the
Claim there exists x € V and u € fw\o such that (x, y) = u - lim(x; z;), but this
contradicts (4).
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ABSTRACT: We show that every k-field of sets with x > 290 js a quotient of a complete
Boolean algebra.

INTRODUCTION

It was asked of Choquet [4] if every (weakly) countably complete Boolean al-
gebra B is a quotient of a complete Boolean algebra. In [2] it was proved that the
o-complete Boolean algebra of the Baire sets of the unit interval is consistently
not a quotientof a complete Boolean algebra. It is remarkable that not many “ab-
solute” examples of (nontrivial) o-complete Boolean algebra’s are known to be a
quotient of a complete Boolean algebra (for other reasons than the definition
only). (What about the Lebesque sets of [0, 1]?) The only results known to me in
this area can be found in [1] and [3].

The goal of this note is to show that it is possible to enlarge the algebra of the
Baire sets, in such a way that the algebra is a quotient of a complete Boolean al-
gebra. Using the algebra, we obtain the following result.

THEOREM 0.1:  Every (2°0)*- field of sets is a quotient of a complete Boolean
algebra.

1. DEFINITIONS AND CONSTRUCTIONS

For all undefined notions, we refer to [3]. All spaces under consideration are
assumed to be zero dimensional. The Boolean algebra of clopen sets of X is to be
denoted by CO(X). The smallest wy-field of sets containing CO(X) is the algebra
Bair(X), the Baire sets of X.

Let k be a cardinal number. A Boolean algebra B is called a K-field of sets if
the algebra has a representation as a subalgebra of a power set P(D) with the
property:

AiEB(i<y<K)=>U{A,~:i<y}EB.
A space X is called a Py-space if the intersection of less than k open sets is again

oven. In this case the algebra CO(X) is a k-field of sets. Py, spaces are called P-
p (x)l p

Mathematics Subject Classification: Primary 54G05; Secondary 54H25.
Key words and phrases: extremely disconnected, k-fields of sets.

209




210 ANNALS NEW YORK ACADEMY OF SCIENCES

spaces. Ro(2¥) denotes the family of regular open sets of the space 2% and the
Stone space of this algebra, the absolute of 2%, is denoted by E(2*). The map IT:
E(2%) — 2¥ is the natural (irreducible) projection defined by II(U) = N{cl(U):
U€E U}. For any open set U C2*¥ we define U* = {F EEQ2*): UE T} = I (uy.

We recall the following construction of A. Dow and J. van Mill [1].

Let + denote the groupstructure on 2%, Fix an ultrafilter ’UOEH'I(O). Forx&2¥
put U, =x+Uy={x+U: UE Uy} EE(2¥). Note that U, E I1-1(x). In particular,
if we put E(Up) = {U,: x €2%} CE(2*) then E(Uy) is a dense subspace of E(2¥).
Moreover, I1: E(Ug) — 2 is a continuous bijection. For any subset A C 2* put
A(Ug) ={U,:a EA}.

THEOREM 1.1: [1]If P is a P-space, then for every embedding P C 2* and for
every Uy, the map IT: P(Uy) — P is a homeomorphism. In particular, every P-
space can be embedded into an extremely disconnected one.

The question for what subspaces A C 2¥ the map IT: A(Uy) —> A is a homeo-
morphism I cannot answer. Assume IT: A(Uy) — A is a homeomorphism. Under
what condition is the map IT: cl1A(Uy) — clA a homeomorphism? We have the
following easy answer.

LEMMA 1.2: IfA C 2% such that I1: A(Uy) — A is a homeomorphism, then the

following are equivalent.
(1) II: cl1A(Ug) — clA is a homeomorphism.
(2) If U,V are pairwise-disjoint regular open sets then

C[IU* NA(Ug))] N el[TI(V* N A(Up))] = D.

Proaf: (1) — (2). U and V are disjoint open regular open subsets so U* NV
are disjoint clopen subsets of E(2¥). In particular, U* N clA(Ug) and V* N
clA(‘Uy) are disjoint clopen subsets of clA(Ug). But the map IT: clA(Up) — clA
is a homeomorphism, so the sets I{U* NA(‘Ug)) and TI(V* NA(Uy)) are contained
in the pairwise disjoint clopen (relative to clA) set II(U* N clA(Uy)) and TI(V* N
clA(‘Up)) and the conclusion follows.

(2) — (1). It suffices to prove that the map I: clA(Ug) — clA is injective. For
p = g, choose disjoint clopen sets U* and V* with p € U*, g€ V*. Thenp € cl(U* N
A(‘Ugp)) and g € cl(V* N A(‘Up)). The assumption implies that II(p) = [1(g). O

2. THE ALGEBRA B(C(X)
Let X be a compact zero-dimensional space. We introduce the following alge-
bra.
BCX) = {f"1(A): A C 290, f: X — 20 continuous}.
Then,
CO(X) C Bair(X) C BC(X).

The following observation is easy to verify.
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LEMMA 2.1: The elements of BC(X) are Lindelof subsets of X and BC(X) is
a w;-field of sets.

Observe that BC(X) need not be a (2°0)*-field of sets.

EXAMPLE: Consider the Alexander compactification oS of the Sorgenfrey-
line S, the so-called “double-arrow space.” then oS - S is homeomorphic to S,
so X =S;US,with Sy = Spand SN 5,=. Since 0.5 is the first countable, {x}
€ BC(a.S), for all x. The only possible supremum for the family {{x}:x € S} is Sy itself,
since S — {a} € BC(a.S), foralla € S,. However, 5y & BC(aS), since it is easy to
verify that elements A € BC(a.S) have the property that A2 is Lindelof.

Note that the elements of the algebra BC(X) are clopen in the G4 topology X
on X. Therefore, the Stone space St(BC(X)) is a compactification of X5. The algebra
BC(X) has the following property.

THEOREM 2.2: BC(X) is a quotient of a complete Boolean algebra.

Proof: Since BC(X) is a oy-field of sets, it follows that the Stone space
St(BC(X)) is a basically disconnected compactification of the P-space Xj, i.€., the space
X with the G topology.

We construct the embedding St(BC(X)) into some 2¥. First we define the index
set I by:

I = {(f, A)| f: X — 20 is continuous, A C 2°0}.

Put C = {(f, A): A clopen} C I. For a subset A C 29, let x4 — {0, 1} be the charac-
teristic map. For (f, A) € I, define f4: X — {0,1} by fa =240 f Note that (f, A)E
C <> f, is continuous. For any G C I define eg: X — {0, 1}G by:

eg(x) = {8a@)(8:4) € G}-

Note that the e map is continuous if G C C. The following properties are easy to
verify.

(1) ec: X —2€ is an embedding.

(2) eg: Xy —>27 is an embedding.

3) cl(eI(A?) c 27 is homeomorphic to S{{BC(X)).
Consider £(27) and choose an ultrafilter Uy € 1-1(0).

CLAIM: The embedding ey e(X) =X, C SHBC)C 27 can be lifted to a ho-
meomorphism of St(BC(X)) to cl((es(X)(Ug)) C E(2").

We verify the conditions mentioned in Lemma 1.2. Let U be a regular open
subset of TI(U* N e f(X)(Uy)) C f(ZI). It suffices to show that II(U* Ne f(X)(Uy))
has a clopen closure in cl{e (X))

There exists a countable { C I such that U =py (pp(U)) and clU =pH‘lcl(pH(U)),
where py: 27 — 2% denotes the projection. If H = {(h,, H,): n € wp} then the map ez(:
X — {1,017 ! need not be continuous, but the property:

AC {1,015 = es'(A) E BC(X)

is still valid, and moreover:




212 ANNALS NEW YORK ACADEMY OF SCIENCES

eg{e7£"1(A)) has clopen closure in cl(e (X)),

because of the following. First of all, the map ITh,: X — (2‘°O)His continuous. If

we define B, C (2°0)% by
b ={by,}, € By < {x, ()} €A,
then it is easy to verify that
ez (A) = (Th,) ™ (By).

And so the pair (ITh,, B,) is represented in the index set I, i.e., there is some /€ J
such that the projection p;: 2° — {0, 1} has the property:

P71 Neg(X) = par1(A) N es(X).

But in such a situation we can conclude that e_q.[_l(A) has clopen closure in cley(X).
Finally, we apply these observations to the set:

A = p(TU* N eg(X)(Ug)))-

To see this, it is enough to observe that the set B = II({U* N ZI(UO)) also has the
property that B = p3 {(p#£(B)). (This identity is verified in [1], and is the key to
Theorem 1.1.) O

3. THE PROOF OF THEOREM 0.1

Let B C P(D) be a (2°0)*-field of sets. We may assume that the elements of B
separate the points of D. Consider the Stone space X = St(B) of B. Then X is
(2°0)*-basically disconnnected and X contains the space D (i.e., the set D with
the topology generated by B as an open base) as a dense subspace. This dense
subspace is a P-space. Theorem 0.1 follows from Theorem 2.2 and the following
claim.

CLAIM: X can be embedded in S{{BC(X)).

In fact we will show that if the algebra BC(X) is taken modulo the ideal of nowhere
dense sets, then B is obtained. Let f: X — 20 be a continuous map and choose A C
20, Because each ¢ € 2%0 is a closed Gg-set and D is a P-space:

Int(f i) =D e flOND=2.

Put B = 290 — A. Put A; = f(f~1(A) N D) and B, = f(f~1(B) N D). Then:
(1) D cU{Int(£1@): r €A} U UfInt( £ 19)): 1 € By}
(2) The supremum of the family {Int( f 1) ¢ € A} is disjoint from Int( f 1@,
Vi€ B;.
(3) The supremum of the family {Int( f~1(2)): ¢ € B;} is disjoint from Int( f~1(z)),
ViE A;.
It follows that the set f~1(A) € BC(X) is equal to the clopen set: Sup{Int(f~1(£)): t €
AU B;} except for the nowhere dense part X — U{Int(f'l(t)): t€ Ay U By} This
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proof shows that the required quotient map ¢: BC(X) — B is the map r(C) =
c(CND). Q
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On the Space of Homeomorphisms of a
Compact n-manifold

RAYMOND Y. WONG*

Department of Mathematics
University of California
Santa Barbara, California 93106

ABSTRACT: In the study of the space of homeomorphisms H(M) (with identity on the
boundary) of a compact n-manifold M (modulo its boundary), the major unsolved problem is
whether H(M) an absolute neighborhood retract. If the answer is affirmative, then it must be
homeomorphic to a Hilbert manifold when combined with known results in infinite-dimension-
al topology. It turns out that there is a simple reduction of the problem to the case M being an
n-ball B. That is, if H(B) is an absolute retract, then H(M) is an absolute neighborhood retract.
We intend to concentrate on the study of H(B) and prove that there is dense subset of the space
of homeomorphism of the Hilbert cube Q such that each of its member is a finite composition
of homeomorphisms that are either Lie in H(B) or act in the direction complementary to B.

1. INTRODUCTION

In this paper we fix an integer » > 0. Let J and J; denote the closed interval [-1, 1],
I the unit interval [0, 1], B the n-cube J" =J; xJ5 x ... xJ, and @ the Hilbert cube
J® =Jy xJy xJ3 x... xJ,,. In the study of the space of homeomorphisms Hy(M) of
a compact manifold M (having the identity on its boundary d(M)), the problem
that whether Hy(M) is an absolute neighborhood retract (ANR) reduces to whether
Hy(B) is an AR ( see the remark by Haver in [5, Section HS2] ). Hence we con-
centrate our effort to the study of Hy(B).

We view B as the subset B x 0 in @ and Hy(B) as a subset of Hy(Q) by identi-
fying h with h x id, where id is the identity function on @, =J, .1 XJp 2% ...,
and the boundary of Q, 4(Q), taken as 3(B) x Q,. Since Hy(Q) is known to be an
AR [3], [8], we may ask whether there is retraction of Hy(Q) onto Hy(B). Of
course if such a retraction exists, H,(B) will be an AR. The purpose of the present
paper is to study such a question. In our main results, we show that there is a
dense subset W of Hy(Q) consisting of elements of the form Ay ... hyhq, where each
h; € Hy(Q) has the property that it either maps B onto B, or satisfies ph; = p, with
p: Q — B being the projection. Clearly, each k; retracts into Hy(B) by either the
restriction on B or simply maps onto the identity of Hy(B). It remains to be seen
whether the present results can be improved to produce a uniformly continuous
retraction of W onto Hy(B).
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Throughout the following, we denote s = (-1, 1)* CQ and p;: @ —I; the pro-
jection onto the i-th factor of Q. We will be concerned mainly with the following
stable subset of Hy(Q):

H = {h € Hy(Q)| h is the identity (id) on a neighborhood of 8(Q)}.

Clearly h is dense in Hy(Q). An h € H is said to be of type 1 if h(B) =B, type
I1 if ph = p. Denote

W= {h ... hyhy| each h; € H is of type 1 or type 11}
and W = closure of W in 2{. Our main purpose is to show that:

THEOREM A: W=,

It follows that every homeomorphism on Q can be approximated by one which
is the finite composition of homeomorphisms of types I or I1.

2. PRELIMINARY RESULTS

We first state a technical result concerning a version of Z-set unknotting in Q.
A subset A in a space X is called a Z-set in X if A is closed and for each open cover
U of X, there is a map f: X = X\A which is U-close to id, that is, each pair of
points x and f(x) is contained in some member of Uu.

LEMMA 1: LetA, A'be Z-sets in @ such that (A UA") N dQ = &. Suppose there
is a homeomorphism /: A — A’ such that d(h, id) < . Then there is i’ € W extend-
ing h such that d(#’, id) <e.

Proof (sketch): The difference between the stated lemma and the well-known
Z-set unknotting theorem in infinite-dimensional (I-D) topology is that we re-
quire the extension to be a member in W. In the following we give only a sketch
of the argument. For a more detailed proof, we refer to [8].

First we connect A to A’ by a homotopy g mapping A x I onto a Z-set in Q hav-
ing the properties that gi  g)= id, gax1)="h, 8ax1) N 8Q = & and the trace of each
point g({a} x I) is contained in an open convex set of mesh <&. Since g4« nag
=, using standard I-D topology we can map gl (AxD) into s by an arbitrarily small
type 1 homeomorphism in 3. So, to simplify notation, we may assume gl @xnC
s. The standard argument in I-D topology is to extend h by a limited homeomor-
phism A’ on Q , satisfying d(k', id) < ¢, which is the composition of infinite many
coordinate moves (a coordinate move is a f &€ W such that for some i, prf=py for
all k = i). Clearly, such a homeomorphism can be approximated by one which is
the composition of finitely many coordinate moves. In other words, each compo-
nent is of type I or II. Therefore, A’ €W. 0O

Our next result is a key engulfing lemma which says that for some given en-
gulfing homeomorphism (described below) h € W, any conjugation of 4 by a
member of H lies in W. The homeomorphism h is simply a radial expansion on
B crossed with the identity on @,. To describe h and the lemma, we need some
notation.
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If x,y EB, x =0 =y, let 6(x, y) represents the angle in radjan between the line
segments one joining 0 to x and the other joining O to y. Let g: Q — O, be the
projection. For r <t, let B, denote the ball of radius r in B and By, 4 denote the
closed annulus consisting of all point x in B such that r <|x| <¢. Define By, ; anal-
ogously.

LEMMA 2: Given constants 0 <a <b <c <d <1, let h be a symmetric radial
expansion on B x Q,,, 1 in the form of kg x id, where hy € Hy(B) satisfies the fol-
lowing conditions.

() holB, U (B\B,) = id.

(ii) O(x, ho(x)) = O for all x €B\{0} and

(iii) ho(By) = B.. _

Then for any g € #{and & > 0, there is A € W such that

() Mg-1@,uB B0y = 4

(b) d(\, g~thg) <¢/2 and

() Mg~ (Bpo, 5y x 2n) D 8™ (B x C)-

Proof (outline): The argument is essentially the same as those given in [6],
[7]. We proceed as follow. For each i > 0, consider the set A; = g! I(B o d) X2y
where Z; = {x € Q,| x; (the k-coordinate of x) = 0 for all k>n +i}. Thu Aq CAZ
C ..., each A, is a Z-set in Q satisfying A; N 3Q = @ and g~ 'hg maps each g~'(A;)
onto itself.

Starting with i =1, by Lemma 1 there is a M € W such that

(a) Ml g1, U BB x 0, =

(bp) d(My, g7 hg) <£/2 and

(c3) M \Blo, 5y x @) D& (B x Z9).

Inductively we can construct a sequence of homeomorphisms Aq, A, ..., each
a member in W, having the properties that for all i,

(@) Mlg-14@, U B\BY) x ) = 45

(b) d(N;, g hg) <€/2 and

() M& ' Bo,5y xQn) D87 (Bo x Z;) and

(d) Mg Bpo,pyxZimp) =M - 1.

The key observation (as demonstrated in [8]) is that U; g (B, xZ;) is dense in

g 1(B, x Q,) and contained in the open set U; )»i(g“l(B[O’ b) %X @pn))- It follows from
I-D topology that the complement

K=g" B, x 0)\U; (g7 (Bpo, 5 x Q)
representing the part of g'l(BC % @,,) not yet engulfed by the union U; ki(g'l(B[O’b)
x Q,)), is a (closed) Z-set in Q. Hence, as a consequence of Lemma 1 again, there
is a Ay, € W such that
Moo lg108, U (B\B) x 0) = i

d(h, g~ hg) <€/2 2and
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Mo (87 (Bo, 5y x @n)) OK.

It is the argument exhibited in [8] that, by requiring A, to satisfy some straight-
forward fiber preserving conditions, the composition of a finite number of A; to-
gether with A, suffices to produce a A=Agh, ... Ay A (for sufficiently large m) so
that

g_l(Bc X Qn) Ch (g_l(B[O,b) X Qn)
and A satisfies the desired properties of the lemma.

LEMMA 3. Let k be defined as in Lemma 2, then for any g € 34, g lhg EW.

Proof: The proof employs the results of Lemma 2 repetitively to obtain engulf-
ing homeomorphisms which, after a finite number of stages, approximate g thg.
The details of the argument is identical to the engulfing Theorem in Connell [2,
Theorem 1] and will be omitted.

Proof of Theorem A: Let W' = { A EH | g~1Ag EW for every g € H }. Clearly
W’ C W (letting g = A) and is a normal subgroup of 2. But 3 is known to be a
simple group [4]. By Lemma 2 W' contains an h = id. Hence, W' = H. 1t follows
that We H.
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ABSTRACT: Let G be an uncountable Hausdorff topological group. We prove that if G is
either Polish and not locally compact or compact and not zero-dimensional, or the countable
product of finite groups with uniformly bounded cardinalities, then every invariant o-finite
measure on G has a proper invariant extension. We do this by expressing G as the union of a
“short” chain of its proper subgroups.

INTRODUCTION

Let G be an uncountable group.

The aim of this note is to address the question, whether every invariant o-finite
measure on G has a proper invariant extension. Harazivili [4] and, independent-
ly, Erdés and Mauldin {2] proved that if m: A — [0, +=] is such a measure, then
its domain A is not equal to P(G) i.e., the measure m is not universal on G. One
would like to know if there is, moreover, a proper invariant extension of m, i.e.,
a measure m': A’ — [0, +] such that AC A’, A'# A and m'| A =m.

All measures considered here are assumed to be o-additive, extended real-val-
ued, diffused and o-finite.

We will say that a group G satisfies the Measure Extension Property (MEP),
if every invariant measure on G has a proper invariant extension.

By an old result of Hulanicki [6], if there is no real-valued measurable cardinal
<|G|, then G satisfies MEP. Pelc [9] proved that all Abelian groups satisfy MEP
and conjectured that in fact all groups do. Though it is now known that some oth-
er algebraically defined classes of groups satisfy MEP, the question, whether
Pelc’s conjecture is true, remains a major open problem.

The aim of this note is to show that some topologically defined classes of
groups satisfy MEP.
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RESULTS

Throughout the paper G is assummed to be a Hausdorff topological group. Our
results are as follows.

THEOREM 1: If G is Polish and not locally compact, then G satisfies MEP.
THEOREM 2: If G is compact and not zero-dimensional, then G satisfies MEP.

THEOREM 3: If G is the product of a sequence {G,,: n < w) of finite groups with
the property that there is a finite constant N such that 1 <|G,| <N for each n <w,
then G satisfies MEP.

In the rest of this note we outline proofs of these results.

Suppose that m is an invariant measure on G. Call a set A C G almost invariant
if m(A AgA)=0 for every g €EG.

We shall need two measure-theoretic lemmas.

LEMMA 4: (Hulanicki [6]) If there exists a nonmeasurable almost invariant
set, then m has a proper invariant extension.

LEMMA 5: (Harazigvili [5]) If there is a set Z such that m*(Z) > 0 and for ev-
ery sequence (g : k < ) of elements of G there is a sequence (f;: i < w) of ele-
ments of G such that

NrU gz-2,

i<w k<o
then m has a proper invariant extension.
The next fact contains the key observation.

LEMMA 6: Suppose that H is a subgroup of G and the index [G:H] of Hin G
is uncountable. If m*(H) >0, then m has a proper invariant extension.

Proof: 1t suffices to show that the set Z = H has the property from Lemma 5.
So take an arbitrary sequence (g;: k <w ) of elements of G. Since the index of
H in G is uncountable, it is possible to choose for each i € w an f; € G such that

fi ¢kU giH g ™
< W
1t suffices now to check that
(NfU g)nU gr=2.
i< k<o k<o

So suppose that there is
® k<w

i<w k<
Fix i, k € w such that g Ef;g, H N g;H. But then f; Eg;Hg, ™!, contradicting (*). QO

Let us say that an infinite, regular cardinal A is in Cof(G), the cofinality spec-
trum of G, if

¢=U g,

a<h
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for a certain strictly increasing sequence (G4: o < A) of subgroups of G with
[G:G,]>wforeach a <A

Note that if G is the union of a chain of length A of proper subgroups and A
has uncountable cofinality then its cofinality cf(A) belongs to Cof(G).

Recall that a universal measure on a set X is called uniform if all sets of car-
dinalities less than |X| have measure zero.

The proof of the following Main Lemma is based on ideas taken from [6].

MAIN LEMMA: If there exists A € Cof(G) such that there is no universal, uni-
form measure on A, then G satisfies MEP.

Proof: Letmbe an invariant measure on G. We will show that m has a proper
invariant extension.

Take A € Cof(G) and let {G4:a < A) be the corresponding sequence of sub-
groups.

If there is an o <A such that m*(G,) > 0, then we are done by Lemma 6.

So assume otherwise and for each a < A let Qg = Gy , 1\Go; by What we have
just assumed, m(Q,) =0. It then follows that for every TC A, the set Ap= Uyer Qa
is almost-invariant. Finally, for some T C A, the set Ay is nonmeasurable, since
otherwise it is easy to define a uniform universal measure on A. By Lemma 4, this

completes the proof. (Q
Let d denote the smallest size of a dominating family in @®.
LEMMA 7: (Fremlin [3]) There is no universal uniform measure on cf(d).

Now Theorems 1, 2, and 3 will follow from Main Lemma as soon as the final
three lemmas are established.

LEMMA 8: If G is Polish and not locally compact, then cf(d) € Cof(G).

Proof: Since G is Polish and not o-compact, the minimal size of a collection
of compact sets which covers G equals d.

Let {C,: o < d} be such a collection. In order to see that cf(d) € Cof(G) con-
sider the sequence (G4: @ < d), where G, is the subgroup of G generated by
UgcoCe O

LEMMA 9: If G is compact and not zero-dimensional, then w; € Cof(G).

Proof: The representation theory of compact groups tells us that in this case
there is a (continuous) group homomorphism which maps G onto an uncountable
closed subgroup G’ of the group U(n, C) of all complex n x n unitary matrices, for
some n > 0.

It clearly suffices to prove that w; € Cof(G").

The idea (which has origins in Ciesielski’s paper [1]) is to represent C as the
union of a strictly increasing sequence (Ly: & < q) of its subfields and then to
define G, as the subgroup of G’ consisting of all matrices from G' with entries
restricted to L,. Some care must be taken, however, to secure that G, = G". So let
B be a maximal algebraically independent over @ subset of the set of all entries
of the elements of G'. Represent B as the union of a strictly increasing sequence
(Bg: o <) of its subsets and define L, as the algebraic closure of the field gen-
erated by B, U Q. Finally, consider the sequence (Gq: a Ewy). QO




ZAKRZEWSKI: EXTENDING INVARIANT MEASURES 221

LEMMA 10: If G is the product of a sequence {G,: n < w) of finite groups with
the property that there is a finite constant N such that 1 <|G,| <N for each n <,
then w; € Cof(G).

Proof: By aresult of van Douwen, there is a strictly increasing sequence (F,:
o < o) of filters in P(w) such that U = Ua<m1Fa is a free ultrafilter in P(w). Let:

H={gEG:{n<m:g,,=e,,} EU},

where e, is the neutral element of G,,.
Then H is a normal subgroup of G and [G:H] <N. Fix a selector § of the col-
lection of all H-cosets. For each a < wy let:

Ha={gEG: {n<w:g,=e,} EFG}

and define G, as the subgroup of G generated by H, U S.
Note that G = G, since [G: H,] > ® and the subgroup of G generated by S is
at most countable. (1

FINAL COMMENTS

The question, which cardinal numbers are in Cof(G) is interesting in its own
right.

Sharp and Thomas [10] proved that if Sym(w) is the group of all permutations
of @, then MA implies that Cof(Sym(w)) ={2°} (compare this with Lemma 8; in
fact, in [10] another proof is given that cf(d) € Cof(Sym(w))). On the other hand
Macpherson and Neumann {8] showed that » & Cof(Sym(w).

If G is compact and not zero-dimensional (see Lemma 9), then a refinement of
our argument establishes that € Cof(G). In particular, this is true for all com-
pact Lie groups.

If G is the countable product of finite groups with uniformly bounded cardi-
nalities (see Lemma 10), then it may happen that o €& Cof(G) (see [7]). On the
other hand, it is easy to see that o € Cof((Z5)®).

Note finally, that if G is the countable product of a sequence of at most count-
able, nontrivial groups, then if all of them are either infinite or have uniformly
bounded cardinalities, then G satisfies MEP. It is open what happens in the inter-
mediate case.
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